Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Endocrinol ; 218(1): 135-49, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23645249

RESUMO

Mammary adipose tissue may contribute to breast cancer development and progression by altering neighboring epithelial cell behavior and phenotype through paracrine signaling. Dietary exposure to soy foods is associated with lower mammary tumor risk and reduced body weight and adiposity in humans and in rodent breast cancer models. Despite the suggested linkage between obesity and breast cancer, the local influence of bioactive dietary components on mammary adiposity for antitumor effects remains unknown. Herein, we report that post-weaning dietary exposure to soy protein isolate and its bioactive isoflavone genistein (GEN) lowered mammary adiposity and increased mammary tumor suppressor PTEN and E-cadherin expression in female mice, relative to control casein diet. To ascertain GEN's role in mammary adipose deposition that may affect underlying epithelial cell phenotype, we evaluated GEN's effects on SV40-immortalized mouse mammary stromal fibroblast-like (MSF) cells during differentiation into adipocytes. MSF cells cultured in a differentiation medium with 40 nM GEN showed reductions in mature adipocyte numbers, triglyceride accumulation, and Pparγ (Pparg) and fatty acid synthase transcript levels. GEN inhibition of adipose differentiation was accompanied by increased estrogen receptor ß (Erß (Esr2)) gene expression and was modestly recapitulated by ERß-selective agonist 2,3-bis-(4-hydroxyphenyl)-propionitrile (DPN). Reduction of Erß expression by siRNA targeting increased Pparγ transcript levels and stromal fibroblast differentiation into mature adipocytes; the latter was reversed by GEN but not by DPN. Conditioned medium from GEN-treated adipocytes diminished anchorage-independent mammosphere formation of human MCF-7 breast cancer cells. Our results suggest a mechanistic pathway to support direct regulation of mammary adiposity by GEN for breast cancer prevention.


Assuntos
Adipogenia , Anticarcinógenos/metabolismo , Neoplasias da Mama/prevenção & controle , Genisteína/metabolismo , Glândulas Mamárias Humanas/metabolismo , Fitoestrógenos/metabolismo , Adiposidade , Animais , Anticarcinógenos/uso terapêutico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Caderinas/biossíntese , Caderinas/genética , Caderinas/metabolismo , Adesão Celular , Feminino , Regulação Neoplásica da Expressão Gênica , Genisteína/uso terapêutico , Humanos , Metabolismo dos Lipídeos , Células MCF-7 , Glândulas Mamárias Humanas/patologia , Camundongos , Camundongos Endogâmicos , PTEN Fosfo-Hidrolase/biossíntese , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fitoestrógenos/uso terapêutico , Proteínas de Vegetais Comestíveis/uso terapêutico , RNA Mensageiro/metabolismo , Proteínas de Soja/uso terapêutico , Desmame
2.
Carcinogenesis ; 34(2): 464-74, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23144318

RESUMO

Despite the well-accepted notion that early maternal influences persist beyond fetal life and may underlie many adult diseases, the risks imposed by the maternal environment on breast cancer development and underlying biological mechanisms remain poorly understood. In this study, we investigated whether early exposure to blueberry (BB) via maternal diet alters oncogene Wnt1-induced mammary tumorigenesis in offspring. Wnt1-transgenic female mice were exposed to maternal Casein (CAS, control) or blueberry-supplemented (CAS + 3%BB) diets throughout pregnancy and lactation. Offspring were weaned to CAS and mammary tumor development was followed until age 8 months. Tumor incidence and latency were similar for both groups; however, tumor weight at killing and tumor volume within 2 weeks of initial detection were lower (by 50 and 60%, respectively) in offspring of BB- versus control-fed dams. Dietary BB exposure beginning at weaning did not alter mammary tumor parameters. Tumors from maternal BB-exposed offspring showed higher tumor suppressor (Pten and Cdh1) and lower proproliferative (Ccnd1), anti-apoptotic (Bcl2) and proangiogenic (Figf, Flt1 and Ephb4) transcript levels, and displayed attenuated microvessel density. Expression of Pten and Cdh1 genes was also higher in mammary tissues of maternal BB-exposed offspring. Mammary tissues and tumors of maternal BB-exposed offspring showed increased chromatin-modifying enzyme Dnmt1 and Ezh2 transcript levels. Body weight, serum insulin and serum leptin/adiponectin ratio were lower for maternal BB-exposed than control tumor-bearing offspring. Tumor weights and serum insulin were positively correlated. Results suggest that dietary influences on the maternal environment contribute to key developmental programs in the mammary gland to modify breast cancer outcome in adult progeny.


Assuntos
Mirtilos Azuis (Planta) , Dieta , Insulina/sangue , Neoplasias Mamárias Animais/prevenção & controle , Fitoterapia , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Proteína Wnt1/fisiologia , Animais , Western Blotting , Feminino , Humanos , Técnicas Imunoenzimáticas , Lactação , Neoplasias Mamárias Animais/metabolismo , Neoplasias Mamárias Animais/patologia , Camundongos , Camundongos Transgênicos , Gravidez , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais
3.
Carcinogenesis ; 33(3): 652-60, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22219179

RESUMO

Mammary stem cells are undifferentiated epithelial cells, which initiate mammary tumors and render them resistant to anticancer therapies, when deregulated. Diets rich in fruits and vegetables are implicated in breast cancer risk reduction, yet underlying mechanisms are poorly understood. Here, we addressed whether dietary factors selectively target mammary epithelial cells that display stem-like/progenitor subpopulations with previously recognized tumor-initiating potential. Using estrogen receptor-positive MCF-7 and estrogen receptor-negative MDA-MB-231 human breast cancer cell lines and freshly isolated epithelial cells from MMTV-Wnt-1 transgenic mouse mammary tumors, we demonstrate that sera of adult mice consuming soy isoflavone genistein (GEN) or blueberry (BB) polyphenol-containing diets alter the population of stem-like/progenitor cells, as measured by their functional ability to self-renew and form anchorage-independent spheroid cultures in vitro at low frequency (1-2%). Serum effects on mammosphere formation were dose-dependently replicated by GEN (40 nM >2 µM) and targeted the basal stem-like CD44+/CD24-/ESA+ and the luminal progenitor CD24+ subpopulations in MDA-MB-231 and MCF-7 cells. GEN inhibition of mammosphere formation was mimicked by the Akt inhibitor perifosine and was associated with enhanced tumor suppressor phosphatase and tensin homologue deleted on chromosome ten (PTEN) expression. In contrast, a selected mixture of BB phenolic acids was only active in MDA-MD-231 cells and its CD44+/CD24-/ESA+ subpopulation, and this activity was independent of induction of PTEN expression. These findings delineate a novel and selective function of distinct dietary factors in targeting stem/progenitor cell populations in estrogen receptor-dependent and -independent breast cancers.


Assuntos
Mirtilos Azuis (Planta) , Neoplasias da Mama/tratamento farmacológico , Genisteína/farmacologia , Isoflavonas/farmacologia , Neoplasias Mamárias Experimentais/tratamento farmacológico , Extratos Vegetais/farmacologia , Animais , Neoplasias da Mama/patologia , Antígeno CD24/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Receptores de Hialuronatos/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Células-Tronco Neoplásicas/efeitos dos fármacos , PTEN Fosfo-Hidrolase/metabolismo , Fosforilcolina/análogos & derivados , Fosforilcolina/farmacologia , Polifenóis/química , Polifenóis/farmacologia , Proteínas de Soja/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA