Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Med Oncol ; 41(3): 68, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38289404

RESUMO

Osteosarcoma (OS), a lethal malignancy, has witnessed an escalating incidence rate. Contemporary therapeutic strategies for this cancer have proven to be inadequate, primarily due to their extensive side effects and the lack of specificity in targeting the molecular pathways implicated in this disease. Consequently, this project is aimed to manufacture and characterize Poly (Lactic-co-glycolic acid) embodying curcumin, a phytocompound devoid of adverse effects which not only exerts an anti-neoplastic influence but also significantly modulates the genetic pathways associated with this malignancy. In this investigation, multiple formulations of PLGA-Cur were synthesized, and the choice of optimal formula was made considering the efficiency of nanoparticle encapsulation and the drug dispersion rate from synthesized PLGA. The selected formulation's physical and chemical attributes, such as its dimension, polydispersity index of the formulation, surface electrical charge, physical-spatial structure, and stability, were examined using methods, including Dynamic light scattering (DLS), Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), and spectrophotometry. Subsequently, the absence of interaction between the drug and the system was assessed using Fourier Transform Infrared Spectroscopy (FT-IR), and cellular uptake was evaluated using fluorescence microscopy. The smart system's responsiveness to environmental stimuli was determined using the dialysis bag method and its anti-tumor properties were investigated on the SAOS-2 cell line. Finally, to evaluate the system's genetic impact on bone cancer, the molecular quantification of the P53 tumor suppressor gene and the oncogene MCL-2 was analyzed using real-time PCR and their protein expression levels were also examined. The PLGAs synthesized in this study exhibited an encapsulation rate of 91.5 ± 1.16% and a maximum release rate of 71 ± 1%, which were responsive to various stimuli. The size of the PLGAs was 12.5 ± 321.2 nm, with an electric charge of -38.9 ± 2.6 mV and a PDI of 0.107, indicating suitable morphology and stability. Furthermore, both the system and the drug retained their natural properties after inoculation. The system was readily absorbed by cancer cells and effectively exerted its anti-cancer properties. Notably, the system had a significant impact on the mentioned genes' expression. The produced nanosystem, possessing optimal physicochemical properties, has the potential to enhance the anti-cancer efficacy of curcumin. This is achieved by altering molecular and genetic pathways within cancer cells, thereby positioning it as a viable adjunctive treatment modality and also synthesizing of this herbal base drug system consider as a completely novel method for cancer therapy that can efficiently modulate genetical pathways involved.


Assuntos
Neoplasias Ósseas , Curcumina , Osteossarcoma , Humanos , Proteína Supressora de Tumor p53/genética , Espectroscopia de Infravermelho com Transformada de Fourier , Oncogenes , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Genes Supressores de Tumor , Concentração de Íons de Hidrogênio
2.
Environ Sci Pollut Res Int ; 30(19): 56731-56742, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36929264

RESUMO

During the present century, plant-based zinc oxide nanoparticles (ZnO-NPs) are exploited extensively for their vast biological properties due to their unique characteristic features and eco-friendly nature. Diabetes is one of the fast-growing human diseases/abnormalities worldwide, and the need for new/ novel antiglycation products is the need of the hour. The study deals with the phyto-fabrication of ZnO-NPs from Boerhaavia erecta, a medicinally important plant, and to evaluate their antioxidant and antiglycation ability in vitro. UV-visible spectroscopy (UV-Vis), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) were used to characterize the phyto-fabricated ZnO-NPs. The characterization of nanoparticles revealed that the particles showed an absorption peak at 362 nm and band gap energy of 3.2 eV, approximately 20.55 nm in size, with a ZnO elemental purity of 96.61%. The synthesized particles were found agglomerated when observed under SEM, and the FT-IR studies proved that the phyto-constituents of the extract involved during the different stages (reduction, capping, and stabilization) of nanoparticles synthesis. The antioxidant and metal chelating activities confirmed that ZnO-NPs could inhibit the free radicals generated, which was dose-dependent with an IC50 value between 1.81 and 1.94 mg mL-1, respectively. In addition, the phyto-fabricated nanoparticles blocked the formation of advanced glycation end products (AGEs) as noticed through inhibition of Amadori products, trapping of reactive dicarbonyl intermediate and breaking the cross-link of glycated protein. It was also noted that the phyto-fabricated ZnO-NPs significantly prevented the damage of red blood corpuscles (RBCs) induced by MGO. The present study's findings will provide an experimental basis for exploring ZnO-NPs in diabetes-related complications.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Óxido de Zinco , Humanos , Óxido de Zinco/química , Antibacterianos/química , Antioxidantes/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Nanopartículas/química , Difração de Raios X , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Nanopartículas Metálicas/química
3.
Acta Biomater ; 157: 1-23, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36521673

RESUMO

Pancreatic cancer is one of the harshest and most challenging cancers to treat, often labeled as incurable. Chemotherapy continues to be the most popular treatment yet yields a very poor prognosis. The main barriers such as inefficient drug penetration and drug resistance, have led to the development of drug carrier systems. The benefits, ease of fabrication and modification of liposomes render them as ideal future drug delivery systems. This review delves into the versatility of liposomes to achieve various mechanisms of treatment for pancreatic cancer. Not only are there benefits of loading chemotherapy drugs and targeting agents onto liposomes, as well as mRNA combined therapy, but liposomes have also been exploited for immunotherapy and can be programmed to respond to photothermal therapy. Multifunctional liposomal formulations have demonstrated significant pre-clinical success. Functionalising drug-encapsulated liposomes has resulted in triggered drug release, specific targeting, and remodeling of the tumor environment. Suppressing tumor progression has been achieved, due to their ability to more efficiently and precisely deliver chemotherapy. Currently, no multifunctional surface-modified liposomes are clinically approved for pancreatic cancer thus we aim to shed light on the trials and tribulations and progress so far, with the hope for liposomal therapy in the future and improved patient outcomes. STATEMENT OF SIGNIFICANCE: Considering that conventional treatments for pancreatic cancer are highly associated with sub-optimal performance and systemic toxicity, the development of novel therapeutic strategies holds outmost relevance for pancreatic cancer management. Liposomes are being increasingly considered as promising nanocarriers for providing not only an early diagnosis but also effective, highly specific, and safer treatment, improving overall patient outcome. This manuscript is the first in the last 10 years that revises the advances in the application of liposome-based formulations in bioimaging, chemotherapy, phototherapy, immunotherapy, combination therapies, and emergent therapies for pancreatic cancer management. Prospective insights are provided regarding several advantages resulting from the use of liposome technology in precision strategies, fostering new ideas for next-generation diagnosis and targeted therapies of pancreatic cancer.


Assuntos
Antineoplásicos , Neoplasias Pancreáticas , Humanos , Lipossomos , Antineoplásicos/uso terapêutico , Sistemas de Liberação de Medicamentos , Portadores de Fármacos , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas
4.
J Control Release ; 349: 844-875, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35908621

RESUMO

Breast cancer (BC) is known to be a highly heterogeneous disease that is clinically subdivided into four primary molecular subtypes, each having distinct morphology and clinical implications. These subtypes are principally defined by hormone receptors and other proteins involved (or not involved) in BC development. BC therapeutic vaccines [including peptide-based vaccines, protein-based vaccines, nucleic acid-based vaccines (DNA/RNA vaccines), bacterial/viral-based vaccines, and different immune cell-based vaccines] have emerged as an appealing class of cancer immunotherapeutics when used alone or combined with other immunotherapies. Employing the immune system to eliminate BC cells is a novel therapeutic modality. The benefit of active immunotherapies is that they develop protection against neoplastic tissue and readjust the immune system to an anti-tumor monitoring state. Such immunovaccines have not yet shown effectiveness for BC treatment in clinical trials. In recent years, nanomedicines have opened new windows to increase the effectiveness of vaccinations to treat BC. In this context, some nanoplatforms have been designed to efficiently deliver molecular, cellular, or subcellular vaccines to BC cells, increasing the efficacy and persistence of anti-tumor immunity while minimizing undesirable side effects. Immunostimulatory nano-adjuvants, liposomal-based vaccines, polymeric vaccines, virus-like particles, lipid/calcium/phosphate nanoparticles, chitosan-derived nanostructures, porous silicon microparticles, and selenium nanoparticles are among the newly designed nanostructures that have been used to facilitate antigen internalization and presentation by antigen-presenting cells, increase antigen stability, enhance vaccine antigenicity and remedial effectivity, promote antigen escape from the endosome, improve cytotoxic T lymphocyte responses, and produce humoral immune responses in BC cells. Here, we summarized the existing subtypes of BC and shed light on immunomodulatory and nano-therapeutic strategies for BC vaccination. Finally, we reviewed ongoing clinical trials on BC vaccination and highlighted near-term opportunities for moving forward.


Assuntos
Neoplasias da Mama , Vacinas Anticâncer , Quitosana , Selênio , Vacinas de DNA , Vacinas , Adjuvantes Imunológicos , Neoplasias da Mama/terapia , Cálcio , Vacinas Anticâncer/uso terapêutico , Feminino , Hormônios , Humanos , Lipídeos , Peptídeos , Fosfatos , Silício , Vacinas de Subunidades Antigênicas
5.
Sci Rep ; 12(1): 9442, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35676521

RESUMO

Zn-doped CuFe2O4 nanoparticles (NPs) were eco-friendly synthesized using plant extract. These nanoparticles were characterized by X-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy and thermal gravimetric analysis (TGA). SEM image showed spherical NPs with size range less than 30 nm. In the EDS diagram, the elements of zinc, copper, iron, and oxygen are shown. The cytotoxicity and anticancer properties of Zn-doped CuFe2O4 NPs were evaluated on macrophage normal cells and A549 lung cancer cells. The cytotoxic effects of Zn-doped CuFe2O4 and CuFe2O4 NPs on A549 cancer cell lines were analyzed. The Zn-doped CuFe2O4 and CuFe2O4 NPs demonstrated IC50 values 95.8 and 278.4 µg/mL on A549 cancer cell, respectively. Additionally, Zn-doped CuFe2O4 and CuFe2O4 NPs had IC80 values of 8.31 and 16.1 µg/mL on A549 cancer cell, respectively. Notably, doping Zn on CuFe2O4 NPs displayed better cytotoxic effects on A549 cancer cells compared with the CuFe2O4 NPs alone. Also spinel nanocrystals of Zn-doped CuFe2O4 (~ 13 nm) had a minimum toxicity (CC50 = 136.6 µg/mL) on macrophages J774 Cell Line.


Assuntos
Antineoplásicos , Nanopartículas Metálicas , Nanopartículas , Antineoplásicos/química , Antineoplásicos/farmacologia , Cobre/química , Nanopartículas Metálicas/química , Nanopartículas/química , Extratos Vegetais/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X , Zinco/química
6.
Microsc Res Tech ; 85(6): 2338-2350, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35294072

RESUMO

In the recent years, green synthesis of zinc oxide nanoparticles (ZnONPs) using plant extracts and phytochemicals has gained significant attention. In present research study, facile, green, and tunable ZnONPs were biosynthesized from Rhamnella gilgitica leaf aqueous extract as a strong reducing and stabilizing agents. The prepared ZnONPs@Rhamnella were characterized and validated using common nanotechnology techniques (UV-Vis, XRD, EDX, FT-IR, SEM, TEM, DLS, and Raman) and revealed spherical morphology with particle size ~21 nm. The asynthesized ZnONPs were further evaluated for different biological applications. Strong antimicrobial efficacies were reported for ZnONPs using disc-diffusion method and were capable of rendering significant antimicrobial potential. ZnONPs were evaluated against HepG2 (IC50 : 18.40 µg/ml) and HUH7 (IC50 : 20.59 µg/ml) cancer cell lines and revealed strong anticancer properties. Dose-dependent MTT cytotoxicity assay was confirmed using Leishmania tropica "KWH23 strain" (promastigote: IC50 : 26.78 µg/ml and amastigote: IC50 : 29.57 µg/ml). Antioxidant activities (DPPH: 93.36%, TAC: 72.43%) were performed to evaluate their antioxidant potentials. Further, protein kinase and α-amylase inhibition assays were determined. Biocompatibility assays were done using human RBCs and macrophages thus revealed biosafe and non-toxic nature of ZnONPs@Rhamnella. In current experiment, we concluded that greenly orchestrated ZnONPs is an attractive, non-toxic and ecofriendly candidate and showed potential biological activities. In future, different clinical trials and in vivo studies are necessary for the confirmation of these remedial properties of ZnONPs using different animal models. RESEARCH HIGHLIGHTS: Greenly orchestrated ZnONPs were synthesized using Rhamnella gilgitica leaves broth. Analytical techniques such as UV, SEM, TEM, XRD, FTIR, DLS, and Raman confirmed synthesis of ZnONPs. Green ZnONPs determined strong antimicrobial, cytotoxic, and antioxidant potentials. Significant enzyme inhibition and biocompatibility assays were investigated.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Óxido de Zinco , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Antioxidantes/farmacologia , Química Verde , Nanopartículas Metálicas/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Óxido de Zinco/química
7.
Nanomaterials (Basel) ; 11(8)2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34443864

RESUMO

Due to their simplicity of synthesis, stability, and functionalization, low toxicity, and ease of detection, gold nanoparticles (AuNPs) are a natural choice for biomedical applications. AuNPs' unique optoelectronic features have subsequently been investigated and used in high-tech applications such as organic photovoltaics, sensory probes, therapeutic agents, the administration of drugs in biological and medical applications, electronic devices, catalysis, etc. Researchers have demonstrated the biosynthesis of AuNPs using plants. The present study evaluates 109 plant species used in the traditional medicine of Middle East countries as new sources of AuNPs in a wide variety of laboratory environments. In this study, dried samples of bark, bulb, flower, fruit, gum, leaf, petiole, rhizome, root, seed, stamen, and above-ground parts were evaluated in water extracts. About 117 plant parts were screened from 109 species in 54 plant families, with 102 extracts demonstrating a bioreduction of Au3+ to Au0, revealing 37 new plant species in this regard. The color change of biosynthesized AuNPs to gray, violet, or red was confirmed by UV-Visible spectroscopy, TEM, FSEM, DLS, and EDAX of six plants. In this study, AuNPs of various sizes were measured from 27 to 107 nm. This study also includes an evaluation of the potency of traditional East Asian medicinal plants used in this biosynthesis of AuNPs. An environmentally safe procedure such as this could act as a foundation for cosmetic industries whose quality assessment systems give a high priority to non-chemically synthesized products. It is crucial that future optimizations are adequately documented to scale up the described process.

8.
Molecules ; 26(6)2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33809917

RESUMO

Gums are carbohydrate biomolecules that have the potential to bind water and form gels. Gums are regularly linked with proteins and minerals in their construction. Gums have several forms, such as mucilage gums, seed gums, exudate gums, etc. Plant gums are one of the most important gums because of their bioavailability. Plant-derived gums have been used by humans since ancient times for numerous applications. The main features that make them appropriate for use in different applications are high stabilization, viscosity, adhesive property, emulsification action, and surface-active activity. In many pharmaceutical formulations, plant-based gums and mucilages are the key ingredients due to their bioavailability, widespread accessibility, non-toxicity, and reasonable prices. These compete with many polymeric materials for use as different pharmaceuticals in today's time and have created a significant achievement from being an excipient to innovative drug carriers. In particular, scientists and pharmacy industries around the world have been drawn to uncover the secret potential of plant-based gums and mucilages through a deeper understanding of their physicochemical characteristics and the development of safety profile information. This innovative unique class of drug products, useful in advanced drug delivery applications, gene therapy, and biosynthesis, has been developed by modification of plant-based gums and mucilages. In this review, both fundamental and novel medicinal aspects of plant-based gums and mucilages, along with their capacity for pharmacology and nanomedicine, were demonstrated.


Assuntos
Portadores de Fármacos , Nanomedicina , Mucilagem Vegetal , Portadores de Fármacos/química , Portadores de Fármacos/uso terapêutico , Humanos , Gomas Vegetais/química , Gomas Vegetais/uso terapêutico , Mucilagem Vegetal/química , Mucilagem Vegetal/uso terapêutico
9.
Environ Sci Pollut Res Int ; 27(21): 26025-26035, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32405942

RESUMO

Cancer is still considered a "hopeless case", besides all of the advancements in oncology research. On the other hand, the natural products, as effective lead molecules, have gained significant interest for research due to the absence of toxic and harmful side effects usually associated with conventional treatment methods. Medicinal properties of herbal plants are strongly evidenced in traditional medicine from ancient times. In the context above, withaferin A (WA) was identified as the active principle of the plant Withania somnifera, its molecule being reported to have excellent anticancer and tumour inhibition activities in various cell lines. Furthermore, the in silico approaches in the medicinal chemistry of WA revealed the biological targets and gave momentum for the research that leads to many amazing pharmacological activities of WA which are not yet explored. This includes a broad spectrum of anticancer actions manifested in different organs (breast, pancreas, colon), melanoma and B cell lymphoma, etc. This review is an extensive survey of the most recent anticancer studies reported for WA, along with its mechanism of action and details about its in vitro and/or in vivo behaviour.


Assuntos
Panax , Withania , Vitanolídeos , Extratos Vegetais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA