Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 12(4)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37107228

RESUMO

Drought is recognized as a paramount threat to sustainable agricultural productivity. This threat has grown more severe in the age of global climate change. As a result, finding a long-term solution to increase plants' tolerance to drought stress has been a key research focus. Applications of chemicals such as zinc (Zn) may provide a simpler, less time-consuming, and effective technique for boosting the plant's resilience to drought. The present study gathers persuasive evidence on the potential roles of zinc sulphate (ZnSO4·7H2O; 1.0 g Kg-1 soil) and zinc oxide (ZnO; 1.0 g Kg-1 soil) in promoting tolerance of cotton plants exposed to drought at the first square stage, by exploring various physiological, morphological, and biochemical features. Soil supplementation of ZnSO4 or ZnO to cotton plants improved their shoot biomass, root dry weight, leaf area, photosynthetic performance, and water-use efficiency under drought stress. Zn application further reduced the drought-induced accumulations of H2O2 and malondialdehyde, and electrolyte leakage in stressed plants. Antioxidant assays revealed that Zn supplements, particularly ZnSO4, reduced reactive oxygen species (ROS) accumulation by increasing the activities of a range of ROS quenchers, such as catalase, ascorbate peroxidase, glutathione S-transferase, and guaiacol peroxidase, to protect the plants against ROS-induced oxidative damage during drought stress. Increased leaf relative water contents along with increased water-soluble protein contents may indicate the role of Zn in improving the plant's water status under water-deficient conditions. The results of the current study also suggested that, in general, ZnSO4 supplementation more effectively increased cotton drought tolerance than ZnO supplementation, thereby suggesting ZnSO4 as a potential chemical to curtail drought-induced detrimental effects in water-limited soil conditions.

2.
Sci Rep ; 9(1): 15186, 2019 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-31645575

RESUMO

The current study sought the effective mitigation measure of seawater-induced damage to mung bean plants by exploring the potential roles of acetic acid (AA). Principal component analysis (PCA) revealed that foliar application of AA under control conditions improved mung bean growth, which was interlinked to enhanced levels of photosynthetic rate and pigments, improved water status and increased uptake of K+, in comparison with water-sprayed control. Mung bean plants exposed to salinity exhibited reduced growth and biomass production, which was emphatically correlated with increased accumulations of Na+, reactive oxygen species and malondialdehyde, and impaired photosynthesis, as evidenced by PCA and heatmap clustering. AA supplementation ameliorated the toxic effects of seawater, and improved the growth performance of salinity-exposed mung bean. AA potentiated several physio-biochemical mechanisms that were connected to increased uptake of Ca2+ and Mg2+, reduced accumulation of toxic Na+, improved water use efficiency, enhanced accumulations of proline, total free amino acids and soluble sugars, increased catalase activity, and heightened levels of phenolics and flavonoids. Collectively, our results provided new insights into AA-mediated protective mechanisms against salinity in mung bean, thereby proposing AA as a potential and cost-effective chemical for the management of salt-induced toxicity in mung bean, and perhaps in other cash crops.


Assuntos
Ácido Acético/economia , Ácido Acético/farmacologia , Análise Custo-Benefício , Salinidade , Água do Mar/química , Vigna/fisiologia , Biomassa , Gases/metabolismo , Minerais/metabolismo , Osmose , Estresse Oxidativo/efeitos dos fármacos , Fenótipo , Fotossíntese/efeitos dos fármacos , Pigmentos Biológicos/metabolismo , Folhas de Planta/efeitos dos fármacos , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/fisiologia , Transpiração Vegetal/efeitos dos fármacos , Potássio/metabolismo , Análise de Componente Principal , Espécies Reativas de Oxigênio/metabolismo , Sódio/metabolismo , Vigna/efeitos dos fármacos , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA