RESUMO
BACKGROUND: Green chili is the predominant vegetable in tropical and subtropical regions with high economic value. However, after harvest, it exhibits vigorous metabolic activities due to the high moisture level, leading to a reduction in bioactive compounds and hence reduced shelf life and nutritional quality. Low temperature storage results in the onset of chilling injury symptoms. Therefore, developing techniques to increase the shelf life of green chilies and safeguard their nutritional value has become a serious concern for researchers. In this regard, an experiment was conducted to evaluate the impact of the alone or combined application of hot water treatment (HWT) (45 °C for 15 min) and eucalyptus leaf extract (ELE) (30%) on 'Golden Hot' chilies in comparison to the control. After treatment, chilies were stored at 20 ± 1.5 °C for 20 days. RESULTS: HWT + ELE-treated chilies had a significant reduction in fruit weight loss (14.6%), fungal decay index (35%), red chili percentage (41.2%), soluble solid content (42.9%), ripening index (48.9%), and reactive oxygen species production like H2O2 (55.1%) and O-2 (46.5%) during shelf in comparison to control, followed by the alone application of HWT and ELE. Furthermore, the combined use of HWT and ELE effectively improved the antioxidative properties of stored chilies including DPPH radical scavenging activities (54.6%), ascorbic acid content (28.4%), phenolic content (31.8%), as well as the enzyme activities of POD (103%), CAT (128%), SOD (26.5%), and APX (43.8%) in comparison to the control. Additionally, the green chilies underwent HWT + ELE treatment also exhibited higher chlorophyll levels (100%) and general appearance (79.6%) with reduced anthocyanin content (40.8%) and wrinkling (43%), leading to a higher marketable fruit (41.3%) than the control. CONCLUSION: The pre-storage application of HWT and ELE could be used as an antimicrobial, non-chemical, non-toxic, and eco-friendly treatment for preserving the postharvest quality of green chilies at ambient temperature (20 ± 1.5 °C).
Assuntos
Antioxidantes , Eucalyptus , Antioxidantes/análise , Peróxido de Hidrogênio , Ácido Ascórbico , Extratos Vegetais/análise , Frutas/microbiologiaRESUMO
The development of an efficient, safe, and environment-friendly technique to terminate tuber dormancy in potatoes (Solanum tuberosum L.) is of great concern due to the immense scope of multiple cropping all over the globe. The breakage of tuber dormancy has been associated with numerous physiological changes, including a decline in the level of starch and an increase in the levels of sugars during storage of freshly harvested seed potatoes, although their consistency across genotypes and various dormancy-breaking techniques have not yet been fully elucidated. The purpose of the present research is to assess the efficacy of four different dormancy-breaking techniques, such as soaking in 90, 60, or 30 mg L-1 solutions of benzyl amino purine (BAP) and 30, 20, or 10 mg L-1 gibberellic acid (GA3) alone and in the combination of optimized concentrations; cold pre-treatment at 6, 4, or 2 °C; electric shock at 80, 60, 40, or 20 Vs; and irradiation at 3.5, 3, 2.5, 2, 1.5, or 1 kGy on the tuber dormancy period and sprout length of six genotypes. Furthermore, the changes that occurred in tuber weight and endogenous starch, sucrose, fructose, and glucose contents in experimental genotypes following the application of these techniques were also examined. Overall, the most effective technique to terminate tuber dormancy and hasten spout growth was the combined application of BAP and GA3, which reduced the length of dormancy by 9.6 days compared to the untreated control, following 6.7 days of electric current, 4.4 days of cold pre-treatment, and finally irradiation (3.3 days). The 60 mg L-1 solution of BAP greatly reduced the dormancy period in all genotypes but did not affect the sprout length at all. The genotypes showed a weak negative correlation (r = - 0.4) (P < 0.05) of endogenous starch contents with dormancy breakage and weight loss or a moderate (r = - 0.5) correlation with sprout length, but a strong positive correlation (r = 0.8) of tuber glucose, fructose, and sucrose contents with dormancy breakage and weight loss. During 3 weeks of storage, sprouting commencement and significant weight loss occurred as tuber dormancy advanced towards breakage due to a reduction in starch and an increase in the sucrose, fructose, and glucose contents of the tubers. These findings could be advantageous for postponing or accelerating seed potato storage as well as investigating related physiological research in the future.
Assuntos
Solanum tuberosum , Açúcares , Solanum tuberosum/genética , Glucose , Morte , Frutose , Genótipo , Amido , SacaroseRESUMO
Long-term different tillage system field trials can provide vital knowledge about sustainable changes in soil health indices and crop productivity. This study examined cotton productivity and soil health indices under different tillage systems and organic materials. The present study was carried out at MNS University of Agriculture, Multan to explore the effect of different tillage systems: conventional tillage (T1), conservation tillage (T2), and organic materials: control (recommended dose of synthetic fertilizers; 160:90:60 kg ha-1NPK), poultry manure (10 t ha-1 PM), compost (10 t ha-1 CM), farmyard manure (20 t ha-1 FYM), and biochar (7 t ha-1 BC) on cotton productivity and soil health indices. Two years field trials showed that different tillage systems and organic materials significantly improved the growth, morphological, and yield attributes of cotton and soil health indices. The cotton showed highest seed cotton yield (3692-3736 kg ha-1), and soil organic matter (0.809-0.815%), soil available nitrogen (74.3-74.6 mg kg-1), phosphorus (7.29-7.43 mg kg-1), and potassium (213-216 mg kg-1) under T2 in comparison to T1 system during both years of field experiment, respectively. Similarly, PM (10 t ha-1) showed highest seed cotton yield (3888-3933 kg ha-1), and soil organic matter (0.794-0.797%), nitrogen (74.7-75.0 mg kg-1), phosphorus (7.39-7.55 mg kg-1), and potassium (221-223 mg kg-1) when these are compared to FYM (20 t ha-1), CM (10 t ha-1), and BC (7 t ha-1) during both years of field experiment, respectively. These findings indicate that conservation tillage system with application of 10 t ha-1 PM are the best practices for the sustainable cotton production and to ensure improvement in the soil health indices under arid climatic conditions.