Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biomed Res Int ; 2023: 1977602, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36860811

RESUMO

RNA viruses have been the most destructive due to their transmissibility and lack of control measures. Developments of vaccines for RNA viruses are very tough or almost impossible as viruses are highly mutable. For the last few decades, most of the epidemic and pandemic viral diseases have wreaked huge devastation with innumerable fatalities. To combat this threat to mankind, plant-derived novel antiviral products may contribute as reliable alternatives. They are assumed to be nontoxic, less hazardous, and safe compounds that have been in uses in the beginning of human civilization. In this growing COVID-19 pandemic, the present review amalgamates and depicts the role of various plant products in curing viral diseases in humans.


Assuntos
COVID-19 , Magnoliopsida , Vírus de RNA , Humanos , Pandemias/prevenção & controle , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , RNA
2.
Front Chem ; 10: 966396, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36110132

RESUMO

The biological synthesis of nanoparticles using fungal cultures is a promising and novel tool in nano-biotechnology. The potential culture of Trichoderma asperellum (T. asperellum) has been used to synthesize copper oxide nanoparticles (CuO NPs) in the current study. The necrotrophic infection in Brassica species is caused due to a foliar pathogen Alternaria brassicae (A. brassicae). Mycogenic copper oxide nanoparticles (M-CuO NPs) were characterized by spectroscopic and microscopic techniques such as UV-visible spectrophotometry (UV-vis), transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The antifungal potential of CuO NPs was studied against A. brassicae. M-CuO NPs exhibited a surface plasmon resonance (SPR) at 303 nm, and XRD confirmed the crystalline phase of NPs. FTIR spectra confirmed the stretching of amide bonds, and the carbonyl bond indicated the presence of enzymes in T. asperellum filtrate. SEM and TEM confirmed the spherical shape of M-CuO NPs with an average size of 22 nm. Significant antifungal potential of M-CuO NPs was recorded, as it inhibited the growth of A. brassicae up to 92.9% and 80.3% in supplemented media with C-CuO NPs at 200 ppm dose. Mancozeb and propiconazole inhibited the radial growth up to 38.7% and 44.2%. SEM confirmed the morphological changes in hyphae and affected the sporulation pattern. TEM revealed hardly recognizable organelles, abnormal cytoplasmic distribution, and increased vacuolization, and light microscopy confirmed the conidia with reduced diameter and fewer septa after treatment with both types of NPs. Thus, M-CuO NPs served as a promising alternative to fungicides.

3.
Biomed Res Int ; 2022: 9504787, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36060144

RESUMO

Purpose: Effectively controlling the accumulation of adipose tissue can be a therapeutic strategy for treating obesity, which is a global problem. The present study was designed for comparative assessment of in vitro antiobesity activities of the Psoralea corylifolia-dichloromethane seed extract (DCME) and the isolated phytochemicals, bakuchiol, isopsoralen, and psoralen, through antiadipogenesis and pancreatic lipase (PL) inhibition assays. Material and Methods. In vitro pancreatic lipase activity was determined spectrophotometrically by measuring the hydrolysis of p-nitrophenyl butyrate (p-NPB) to p-nitrophenol at 405 nm, and adipogenesis was assayed in 3 T3-L1 adipocytes (by using Oil Red O staining) using P. corylifolia-dichloromethane seed extract (DCME) and individual compounds, isolated from the extract. Result: Antilipase as well as antiadipogenesis activity was displayed by both the DCME and the compounds. Maximum antilipase property was recorded in DCME (26.02 ± .041%) at 100 µg/ml, while, among the isolated compounds, bakuchiol exhibited a higher activity (24.2 ± 0.037%) at 100 µg/ml concentration, compared to other isolates. DCME was found to exhibit antiadipogenesis property, 75 ± 0.003% lipid accumulation, compared to the control at 100 µg/ml dose. Bakuchiol, isopsoralen, and psoralen inhibited the lipid accumulation in 3T3-L1 preadipocytes, 78.06 ± 0.002%, 80.91 ± 0.004%, and 80.91 ± 0.001%, respectively, lipid accumulation in comparison to control at 25 µM dose. Conclusion: The present study highlights the antiobesity potential of P. corylifolia and its active constituents. Thus, it can be concluded that P. corylifolia has the potential to treat obesity and related diseases; however, further research on dose standardization and clinical trials are required.


Assuntos
Fabaceae , Furocumarinas , Psoralea , Ficusina/farmacologia , Lipase/análise , Lipídeos/análise , Cloreto de Metileno , Obesidade/tratamento farmacológico , Extratos Vegetais/química , Psoralea/química , Sementes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA