Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Photochem Photobiol Sci ; 22(7): 1543-1559, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36826694

RESUMO

The Eclipta alba plant is considered hepatoprotective, owing to its phytoconstituents wedelolactone. In the current study, effect of elevated ultraviolet-B (eUV-B) radiation was investigated on biochemical, phytochemical, and antioxidative enzymatic activities of E. alba (Bhringraj) plant. The UV-B exposure resulted in an increase in oxidative stress, which has caused an imbalance in phytochemical, biochemical constituents, and induced antioxidative enzymatic activities. It was observed that the UV-B exposure promoted wedelolactone yield by 23.64%. Further, the leaf extract of UV-B-exposed plants was used for the synthesis of carbon quantum dots (CQDs) using low cost, one-step hydrothermal technique and its biocompatibility was studied using in vitro MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay on HepG2 liver cell line. It revealed no toxicity in any treatment groups in comparison to the control. Both CQDs and leaf extract were orally administered to the golden hamster suffering from alcohol-induced liver cirrhosis. In the morphometric study, it was clearly observed that a combination of UV-B-exposed leaf extract and synthesized CQDs delivered the best result with maximum recovery of liver tissues. The present study reveals the positive impact of UV-B exposure on the medicinally important plant, increased yield of wedelolactone, and its enhanced hepatoprotective efficacy for the treatment of damaged liver tissues.


Assuntos
Eclipta , Pontos Quânticos , Animais , Cricetinae , Extratos Vegetais/farmacologia , Mesocricetus , Antioxidantes/farmacologia , Cirrose Hepática , Carbono/farmacologia
2.
Environ Sci Pollut Res Int ; 28(33): 45434-45449, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33866503

RESUMO

The UV-B-induced signals play a crucial role in improving the analeptic values of medicinally important plants. Eclipta alba L. (Hassak), commonly known as False Daisy, holds supreme stature with its pharmaceutical association in treating various ailments, particularly in Ayurvedic medicine. The present study aimed to evaluate the response of E. alba plants exposed to ambient (AT) and two different supplemental UV-B doses (eUV-B, ambient ±7.2 kJ m-2 day-1), i.e., intermittent (IT) and continuous (CT) UV-B treatment for 130 and 240 h respectively. Antioxidative activities and medicinally important compounds (wedelolactone) were measured in different plants' parts at three growth stages. Under both the eUV-B treatments, the photosynthetic pigments were adversely affected (along with reductions in protein content) with a concomitant increase in secondary metabolites. Substantial variations in enzymatic antioxidants and non-enzymatic compounds showed the adaptive resilience strategies of plants against eUV-B. The wedelolactone content increased in leaves but compromised in stem and roots under IT. The results concluded that IT UV-B exposure led to the improvement of plant growth and the yield of wedelolactone compared to CT, suggesting its ameliorative role in improving the test plant's medicinal value.


Assuntos
Eclipta , Antioxidantes , Cumarínicos , Extratos Vegetais/farmacologia , Raios Ultravioleta
3.
Physiol Mol Biol Plants ; 26(4): 773-792, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32255939

RESUMO

In the present study sensitivity of a medicinal plant Eclipta alba L. (Hassk) (False daisy) was assessed under intermittent (IT) and continuous (CT) doses of elevated ultraviolet-B (eUV-B). Eclipta alba is rich in medicinally important phytochemical constituents, used against several diseases. The hypothesis of this study is that alterations in UV-B dose may modify the quantity and quality of medicinally valuable components with changes in the morphological and physiological parameters of test plant. To fulfill our hypothesis IT and CT of eUV-B (ambient ± 7.2 kJ m-2 day-2) was given for 130 and 240 h respectively to assess the impact of UV-B stress. Growth and physiological parameters were adversely affected under both the treatments with varying magnitude. The observation of leaf surfaces showed increase in stomatal and trichome densities suggesting the adaptive resilience of the plants against UV-B. Besides, biosynthesis of wedelolactone, a major medicinal compound of E. alba was observed to be stimulated under UV-B exposure. The essential oil content was reduced under IT while increased under CT. A total of 114 compounds were identified from oil extract of E. alba. n-Pentadecane (25.79%), n-Octadecane (12.98%), ß-Farnesene (9.43%), α-Humulene (4.95%) (E)-Caryophyllene (4.87%), Phytol (4.25%), α-Copaene (2.26%), Humulene epoxide (1.46%), ß-Pinene (1.07) and ß-Caryophyllene oxide (1.06%) were identified as major components of oil. CT induced the synthesis of some medicinally important compounds such as α-terpineol, δ-cadinene, linolenic acid, methyl linoleate and myristic acid amide. Hence, the study revealed that continuous UV-B exposure of low intensity could be helpful for commercial exploitation of essential oil in E. alba.

4.
Ecotoxicology ; 28(3): 277-293, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30761429

RESUMO

Ultraviolet-B radiation (UV-B) is inherent part of solar spectrum and tropospheric ozone (O3) is a potent secondary air pollutant. Therefore the present study was conducted to evaluate the responses of Helianthus annuus L. cvs DRSF 108 and Sungold (sunflower) to supplemental UV-B (sUV-B; ambient + 7.2 kJ m-2 d-1) and elevated ozone (O3; ambient + 10 ppb), given singly and in combination under field conditions using open-top chambers. The individual and interactive effects of O3 and sUV-B induced varying changes in both the cultivars of sunflower ranging from ultrastructural variations to growth, biomass, yield and oil composition. Reduction in leaf area of Sungold acted as a protective feature which minimized the perception of sUV-B as well as uptake of O3 thus led to lesser carbon loss compared to DRSF 108. Number- and weight of heads plant-1 decreased although more in Sungold with decline of oil content. Both the stresses when given singly and combination induced rancidification of oil and thus made the oil less suitable for human consumption.


Assuntos
Helianthus/crescimento & desenvolvimento , Helianthus/efeitos da radiação , Ozônio/farmacologia , Óleo de Girassol/análise , Raios Ultravioleta , Poluentes Atmosféricos/farmacologia , Biomassa , Folhas de Planta/efeitos da radiação , Sementes/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA