Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 4(3): 2544-2557, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35014372

RESUMO

Immuno-positron emission tomography (immuno-PET) is a rapidly growing imaging technique in which antibodies are radiolabeled to monitor their in vivo behavior in real time. However, effecting the controlled conjugation of a chelate-bearing radioactive atom to a bulky antibody without affecting its immunoreactivity at a specific site is always challenging. The in vivo stability of the radiolabeled chelate is also a key issue for successful tumor imaging. To address these points, a facile ultra-stable radiolabeling platform is developed by using the propylene cross-bridged chelator (PCB-TE2A-alkyne), which can be instantly functionalized with various groups via the click reaction, thus enabling specific conjugation with antibodies as per choice. The PCB-TE2A-tetrazine derivative is selected to demonstrate the proposed strategy. The antibody trastuzumab is functionalized with the trans-cyclooctene (TCO) moiety in the presence or absence of the PEG linker. The complementary 64Cu-PCB-TE2A-tetrazine is synthesized via the click reaction and radiolabeled with 64Cu ions, which then reacts with the aforementioned TCO-modified antibody via a rapid biorthogonal ligation. The 64Cu-PCB-TE2A-trastuzumab conjugate is shown to exhibit excellent in vivo stability and to maintain a higher binding affinity toward HER2-positive cells. The tumor targeting feasibility of the radiolabeled antibody is evaluated in tumor models. Both 64Cu-PCB-TE2A-trastuzumab conjugates show high tumor uptakes in biodistribution studies and enable unambiguous tumor visualization with minimum background noise in PET imaging. Interestingly, the 64Cu-PCB-TE2A-PEG4-trastuzumab containing an additional PEG linker displays a much faster body clearance compared to its counterpart with less PEG linker, thus affording vivid tumor imaging with an unprecedentedly high tumor-to-background ratio.


Assuntos
Anticorpos/química , Materiais Biocompatíveis/química , Complexos de Coordenação/química , Cobre/química , Tomografia por Emissão de Pósitrons , Animais , Anticorpos/metabolismo , Materiais Biocompatíveis/metabolismo , Química Click , Complexos de Coordenação/metabolismo , Cobre/metabolismo , Radioisótopos de Cobre , Teste de Materiais , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Estrutura Molecular , Neoplasias Experimentais/diagnóstico por imagem , Neoplasias Experimentais/metabolismo , Tamanho da Partícula
2.
Biochem Genet ; 49(9-10): 674-81, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21681576

RESUMO

Valeriana jatamansi Jones is a natural tetraploid species indigenous to the Indian Himalaya. To assess its genetic diversity and population structure, we analyzed six natural populations from the western Himalayan region using amplified fragment length polymorphism. An analysis of molecular variance found that 93% of the genetic variation of V. jatamansi was within populations and 7% among populations. The correlation between genetic and geographic distances (r = 0.14) was not significant. Though the populations are well separated, the lack of distinct genetic variation between populations may be due to either recent rapid fragmentation from a wide and continuous area resulting in genetically similar populations or wide dispersal of seed by wind, since the follicles are feathery. Polyploidy may be the reason for the lack of genetic impoverishment due to fragmentation.


Assuntos
Variação Genética , Valeriana/genética , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Análise de Variância , Análise por Conglomerados , Índia , Filogenia , Filogeografia , Folhas de Planta , Análise de Componente Principal , Tetraploidia
3.
Physiol Mol Biol Plants ; 17(3): 313-6, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23573024

RESUMO

Podophyllum hexandrum is an important high altitude medicinal plant from Himalaya. Somatic chromosomes of this species were studied to delineate and physical mapping of repetitive rDNA sites to provide landmarks in chromosome identification. The karyotype formula of this species was found to be 6m + 2sm + 2st + 2t with secondary constriction in the chromosome 1 and 7. The FISH analysis of rDNA sites showed 4 sites for 18S rDNA and 2 sites for 5S rDNA. The chromosome number 1, 2, 5 and 6 can be identified based on 18S rDNA sites in their short arm and chromosome 1 and 2 can be identified by 5S rDNA site in the centromere region. The estimated genome size of this plant is 16.07 pg (1C).

4.
Chem Biodivers ; 6(7): 1042-52, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19623550

RESUMO

The heterogeneous Indian tea germplasm includes 'China', 'Assam', 'Cambod', and their hybrids which were evaluated using biochemical markers viz., total catechin and their fractions, for varietal identification and characterization. Principal component analysis (PCA) of biochemical characters showed that the total catechin and trihydroxylated catechin has higher eigenvalues. The first two principal components (PCs) could differentiate more than 90% of the clones studied. This grouping based on first two principal component matrices differentiated 'China', and their hybrids with 'Assam' and 'Cambod' variety. Morphologically indistinct large-leaved 'Cambod' variety and 'Assam' varieties could not be differentiated using biochemical markers, since both varietal types taxonomically belong to a single species. Clones of 'China' type showed low total catechin content and catechin ratio which are distinctly grouped. The 'China-Assam' and 'China-Cambod' hybrids formed intermediate groups between 'China' PC group and 'Cambod'/'Assam' PC groups, providing evidence for genetic control of catechin ratio variation. Tea clones which are differentially positioned in the PC group could be explained based on the genetic contribution by other varietal type as parents. This biochemical characterization will be a useful tool in the development of quality-tea clones with different proportion of total catechin and their fractions.


Assuntos
Camellia sinensis/química , Catequina/análogos & derivados , Catequina/análise , Chá/química , Biomarcadores/análise , Catequina/química , Índia , Análise de Componente Principal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA