Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Trop Anim Health Prod ; 53(5): 497, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34609608

RESUMO

To explore the potential alternative of anti-coccidials, we investigated the therapeutic efficacy of dietary Piper sarmentosum extract (PSE) on induced coccidia infection in chickens. A total of 96-day-old chickens were randomly distributed to 1 of 3 treatment groups, including (1) control negative untreated uninfected (CN), (2) control positive untreated infected (CP), and (3) Piper sarmentosum (P. sarmentosum) extract-treated infected group (PSE). Our results demonstrated that E. tenella challenged untreated group showed a reduction (P < 0.05) in post-infection (PI) body weight compared to control negative group. However, supplementation of P. sarmentosum extract had no significant effects on body weight and cecal lesions compared with control positive group. Infected chickens fed PSE diet decreased (P < 0.05) the bloody diarrhea scores and oocyst shedding (during the day 5 to 8 post-infection) than that of CP chickens. E. tenella-challenged chickens upregulated (P < 0.05) the mRNA expression of IL-8 and Bcl-2 compared to PSE chickens, while IFN-γ compared to CN chickens. On the other hand, treatment of P. sarmentosum extract tended to increase (P < 0.05) the transcription patterns of IL-4, IL-10, CLDN 1, SOD 1, and Bax with the comparison of control positive group; however, there were no significant effects on IL-8, ZO 1, and CAT expression between the PSE and CP groups. Collectively, these findings elaborated that dietary P. sarmentosum extract exhibit potential anti-coccidial effects in controlling the coccidia infection in chickens.


Assuntos
Coccidiose , Eimeria tenella , Piper , Doenças das Aves Domésticas , Animais , Galinhas , Coccidiose/tratamento farmacológico , Coccidiose/veterinária , Suplementos Nutricionais , Doenças das Aves Domésticas/tratamento farmacológico
2.
J Anim Physiol Anim Nutr (Berl) ; 104(6): 1809-1818, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32333620

RESUMO

Carotenoids are one of the widespread and ubiquitous lipid-soluble pigments that produce a wide range of colours which are universally found in various plants, microalgae, bacteria and fungi. Recently, interest in using carotenoids as feed ingredients has increased markedly owing to their bioactive and health-promoting properties. In terms of applications, carotenoid-rich products are widely available in the form of food and feed additive, supplements and natural colourants. Carotenoids play a versatile biological role that contributes to therapeutic effects, including anticancer, immunomodulators, anti-inflammatory, antibacterial, antidiabetic and neuroprotective. Dietary supplementation of carotenoids not only improves the production performance and health of poultry birds, but also enhances the quality of egg and meat. Several studies have suggested that the supplementation of plant derived carotenoids revealed numerous health-promoting activities in poultry birds. Carotenoids reduce the oxidative stress in pre-hatched and post-hatched birds through different mechanisms, including quench free radicals, activating antioxidant enzymes and inhibiting the signalling pathways. Use of carotenoids in poultry feed as a part of nutrient that confers bird health and improve product quality. Carotenoids play a critical role for the pigmentation of egg yolk, skin, legs, beak, comb, feather and fat. Birds consumed carotenoid deficient diet resulting hues of their egg yolk or pale coloured skin. Therefore, uniform pigmentation generally indicates the health status and quality of the poultry products. This review aims to gather recent information regarding bioactive properties of carotenoids and highlight pharmaceutical and health beneficial effects of carotenoids for the poultry industry. Additionally, it explores the importance of carotenoids as alternative feed ingredients for poultry to boost the production performance and replace synthetic medicine and nutrients.


Assuntos
Carotenoides , Aves Domésticas , Animais , Antioxidantes , Dieta/veterinária , Pigmentação
3.
Plant Dis ; 104(5): 1492-1499, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32150503

RESUMO

Potato blackleg is caused by a diverse species of pectinolytic bacteria. In Pakistan, approximately 90% of the pathogens involved belong to Pectobacterium atrosepticum. Survey (2014 to 2017), sampling, and isolation from different potato growing areas of Punjab, Pakistan depicted an overall disease incidence of approximately 15%. Thirty-six pectinolytic strains confirmed through biochemical and pathogenicity testing were characterized via gapA gene to identify them at the species level. To further validate the identification, one strain from each species SS26 (P. atrosepticum), SS28 (Pectobacterium polaris), SS70 (Dickeya dianthicola), SS90 (Pectobacterium parmentieri), SS95 (Pectobacterium punjabense), and SS96 (Pectobacterium versatile) were selected for draft genome sequencing and multilocus sequence analysis of 13 housekeeping genes (fusA, rpoD, acnA, purA, gyrB, recA, mdh, mtlD, groEL, secY, glyA, gapA, and rplB). Phylogenetic analysis revealed considerable genetic diversity in the genus Pectobacterium. In silico DNA-DNA hybridization and average nucleotide identity values of the strains selected for genome sequencing were determined with other reference Pectobacterium and Dickeya strains. Moreover, all six representative strains were also phenotypically characterized on the basis of metabolism of different carbon sources. Overall, on the basis of genotypic and phenotypic characteristics, these 36 isolates were grouped into six species: P. atrosepticum, P. versatile, P. parmentieri, P. polaris, P. punjabense, and D. dianthicola.


Assuntos
Pectobacterium , Solanum tuberosum , DNA Bacteriano , Genes Bacterianos , Paquistão , Filogenia , Doenças das Plantas , Análise de Sequência de DNA
4.
Pest Manag Sci ; 71(4): 607-15, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25228142

RESUMO

BACKGROUND: Application of a matrix-immobilised target enzyme for screening inhibitors is widely used in drug development, but there are few studies in insecticide discovery. In this paper, an economical and effective immobilised acetylcholinesterase (AChE) column was prepared using the sol-gel embedment method, which was further combined with high-performance liquid chromatography for screening the AChE inhibitors and insecticidal compounds from complex natural products. RESULTS: AChE inhibitory constituents magnolol and honokiol were isolated from the ethanol extract of Magnolia officinalis, with IC50 values of 0.069 and 0.057 mM respectively. In an in vivo bioassay, magnolol and honokiol showed insecticidal activity against Nilaparvata lugens, with LC50 values of 0.324 and 0.137 mM, which are comparable with that of commonly used insecticide chlorpyrifos (0.233 mM). Moreover, molecular docking was carried out against a homology model of N. lugens AChE. The complexes showed that magnolol and honokiol placed themselves nicely into the active site of the enzyme and exhibited an interaction energy that was in accordance with our activity profile data. CONCLUSION: These results demonstrate that magnolol and honokiol have great applied potential to be developed as natural insecticides, and an immobilised AChE column is very useful as a rapid screening tool for target enzymes towards potent inhibitors.


Assuntos
Alcaloides/farmacologia , Compostos de Bifenilo/farmacologia , Cromatografia Líquida de Alta Pressão/instrumentação , Hemípteros/efeitos dos fármacos , Inseticidas/farmacologia , Lignanas/farmacologia , Magnolia/química , Sesquiterpenos/farmacologia , Acetilcolinesterase/metabolismo , Animais , Inibidores da Colinesterase/metabolismo , Feminino , Extratos Vegetais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA