Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Clin Invest ; 129(4): 1612-1625, 2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30702441

RESUMO

Although clear cell renal cell carcinoma (ccRCC) has been shown to result in widespread aberrant cytosine methylation and loss of 5-hydroxymethylcytosine (5hmC), the prognostic impact and therapeutic targeting of this epigenetic aberrancy has not been fully explored. Analysis of 576 primary ccRCC samples demonstrated that loss of 5hmC was strongly associated with aggressive clinicopathologic features and was an independent adverse prognostic factor. Loss of 5hmC also predicted reduced progression-free survival after resection of nonmetastatic disease. The loss of 5hmC in ccRCC was not due to mutational or transcriptional inactivation of ten eleven translocation (TET) enzymes, but to their functional inactivation by l-2-hydroxyglutarate (L2HG), which was overexpressed due to the deletion and underexpression of L2HG dehydrogenase (L2HGDH). Ascorbic acid (AA) reduced methylation and restored genome-wide 5hmC levels via TET activation. Fluorescence quenching of the recombinant TET-2 protein was unaffected by L2HG in the presence of AA. Pharmacologic AA treatment led to reduced growth of ccRCC in vitro and reduced tumor growth in vivo, with increased intratumoral 5hmC. These data demonstrate that reduced 5hmC is associated with reduced survival in ccRCC and provide a preclinical rationale for exploring the therapeutic potential of high-dose AA in ccRCC.


Assuntos
5-Metilcitosina/análogos & derivados , Oxirredutases do Álcool/biossíntese , Ácido Ascórbico/farmacologia , Carcinoma de Células Renais/tratamento farmacológico , Neoplasias Renais/tratamento farmacológico , 5-Metilcitosina/metabolismo , Adulto , Oxirredutases do Álcool/genética , Animais , Carcinoma de Células Renais/enzimologia , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Feminino , Deleção de Genes , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neoplasias Renais/enzimologia , Neoplasias Renais/genética , Neoplasias Renais/patologia , Masculino , Camundongos
2.
Metab Eng ; 43(Pt B): 198-207, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-27856334

RESUMO

The mitochondrial citrate transport protein (CTP), encoded by SLC25A1, accommodates bidirectional trafficking of citrate between the mitochondria and cytosol, supporting lipid biosynthesis and redox homeostasis. Genetic CTP deficiency causes a fatal neurodevelopmental syndrome associated with the accumulation of L- and D-2-hydroxyglutaric acid, and elevated CTP expression is associated with poor prognosis in several types of cancer, emphasizing the importance of this transporter in multiple human pathologies. Here we describe the metabolic consequences of CTP deficiency in cancer cells. As expected from the phenotype of CTP-deficient humans, somatic CTP loss in cancer cells induces broad dysregulation of mitochondrial metabolism, resulting in accumulation of lactate and of the L- and D- enantiomers of 2-hydroxyglutarate (2HG) and depletion of TCA cycle intermediates. It also eliminates mitochondrial import of citrate from the cytosol. To quantify the impact of CTP deficiency on metabolic flux, cells were cultured with a set of 13C-glucose and 13C-glutamine tracers with resulting data integrated by metabolic flux analysis (MFA). CTP-deficient cells displayed a major restructuring of central carbon metabolism, including suppression of pyruvate dehydrogenase (PDH) and induction of glucose-dependent anaplerosis through pyruvate carboxylase (PC). We also observed an unusual lipogenic pathway in which carbon from glucose supplies mitochondrial production of alpha-ketoglutarate (AKG), which is then trafficked to the cytosol and used to supply reductive carboxylation by isocitrate dehydrogenase 1 (IDH1). The resulting citrate is cleaved to produce lipogenic acetyl-CoA, thereby completing a novel pathway of glucose-dependent reductive carboxylation. In CTP deficient cells, IDH1 inhibition suppresses lipogenesis from either glucose or glutamine, implicating IDH1 as a required component of fatty acid synthesis in states of CTP deficiency.


Assuntos
Proteínas de Transporte de Ânions/deficiência , Ácidos Graxos/biossíntese , Mitocôndrias/metabolismo , Proteínas Mitocondriais/deficiência , Proteínas de Neoplasias , Neoplasias/metabolismo , Linhagem Celular Tumoral , Ácidos Graxos/genética , Humanos , Mitocôndrias/genética , Mitocôndrias/patologia , Proteínas de Neoplasias/deficiência , Proteínas de Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/patologia , Transportadores de Ânions Orgânicos
3.
Kidney Int ; 80(6): 601-11, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21544063

RESUMO

The unchecked overproduction of reactive oxygen and nitrogen species by inflammatory cells can cause tissue damage, intensify inflammation, promote apoptosis, and accelerate the progression of immune-mediated glomerulonephritis (GN). Here we tested whether the anti-inflammatory and antioxidant properties of the green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG) favorably affect the development of immune-mediated GN. Pretreatment of 129/svJ mice with EGCG from 2 days before to 2 weeks after the induction of GN led to reduced proteinuria and serum creatinine, and marked improvement in renal histology when compared with vehicle-pretreated diseased mice. This pretreatment reduced oxidative stress, and normalized osteopontin, p65/nuclear factor-κB, inducible nitric oxide synthase, nitric oxide metabolites, p-Akt, phosphorylated extracellular signal-regulated kinases 1 and 2, p47phox, and myeloperoxidase, all of which were elevated in vehicle-pretreated diseased mice. Levels of glutathione peroxidase and peroxisome proliferator-activated receptor-γ (PPARγ), both reduced in the vehicle-pretreated diseased mice, were normalized. This renoprotective effect was reversed by concomitant administration of the PPARγ antagonist GW9662 throughout the EGCG pretreatment period. Importantly, mortality and renal dysfunction were significantly attenuated even when the polyphenol treatment was initiated 1 week after the onset of GN. Thus, EGCG reversed the progression of immune-mediated GN in mice by targeting redox and inflammatory pathways.


Assuntos
Doença Antimembrana Basal Glomerular/prevenção & controle , Catequina/análogos & derivados , Chá/química , Animais , Doença Antimembrana Basal Glomerular/tratamento farmacológico , Doença Antimembrana Basal Glomerular/metabolismo , Doença Antimembrana Basal Glomerular/patologia , Anti-Inflamatórios não Esteroides/farmacologia , Antioxidantes/farmacologia , Catequina/farmacologia , Catequina/uso terapêutico , Rim/patologia , Masculino , Camundongos , Camundongos da Linhagem 129 , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Osteopontina/metabolismo , Estresse Oxidativo/efeitos dos fármacos , PPAR gama/metabolismo , Transdução de Sinais/efeitos dos fármacos
4.
Med Oncol ; 27(4): 1096-101, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19859844

RESUMO

Curcumin is a naturally occurring polyphenolic compound found in the turmeric, which is used as food additive in Indian cooking and as a therapeutic agent in traditional Indian medicine. Curcumin is currently under investigation as a chemotherapeutic and chemopreventive agent in adult cancer models at both pre-clinical and clinical levels. In this preliminary study, we show that curcumin is effective in causing cell cycle arrest, inducing apoptosis, and suppressing colony formation in the Ewing sarcoma cell line SK-NEP-1. Curcumin causes upregulation of cleaved caspase 3 and downregulation of phospho-Akt, producing apoptosis in Ewing sarcoma cells at an inhibitory concentration 50% (IC50) of approximately 4 µM. Our findings indicate a need for further evaluation of curcumin in chemotherapy and chemoprevention of Ewing sarcoma.


Assuntos
Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Neoplasias Ósseas/patologia , Ciclo Celular/efeitos dos fármacos , Curcumina/uso terapêutico , Sarcoma de Ewing/patologia , Western Blotting , Neoplasias Ósseas/tratamento farmacológico , Linhagem Celular Tumoral , Citometria de Fluxo , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sarcoma de Ewing/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA