Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Geochem Health ; 46(3): 87, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38367090

RESUMO

The ecotoxic effect of Zn species arising from the weathering of the marmatite-like sphalerite ((Fe, Zn)S) in Allium cepa systems was herein evaluated in calcareous soils and connected with its sulfide oxidation mechanism to determine the chemical speciation responsible of this outcome. Mineralogical analyses (X-ray diffraction patterns, Raman spectroscopy, scanning electron microscopy and atomic force microscopy), chemical study of leachates (total Fe, Zn, Cd, oxidation-reduction potential, pH, sulfates and total alkalinity) and electrochemical assessments (chronoamperometry, chronopotentiometry, cyclic voltammetry, and electrochemical impedance spectroscopy) were carried out using (Fe, Zn)S samples to elucidate interfacial mechanisms simulating calcareous soil conditions. Results indicate the formation of polysulfides (Sn2-), elemental sulfur (S0), siderite (FeCO3)-like, hematite (Fe2O3)-like with sorbed CO32- species, gunningite (ZnSO4·H2O)-like phase and smithsonite (ZnCO3)-like compounds in altered surface under calcareous conditions. However, the generation of gunningite (ZnSO4·H2O)-like phase was predominant bulk-solution system. Quantification of damage rates ranges from 75 to 90% of bulb cells under non-carbonated conditions after 15-30 days, while 50-75% of damage level is determined under neutral-alkaline carbonated conditions. Damage ratios are 70.08 and 30.26 at the highest level, respectively. These findings revealed lower ecotoxic damage due to ZnCO3-like precipitation, indicating the effect of carbonates on Zn compounds during vegetable up-taking (exposure). Other environmental suggestions of the (Fe, Zn)S weathering and ecotoxic effects under calcareous soil conditions are discussed.


Assuntos
Cebolas , Poluentes do Solo , Compostos de Zinco , Solo/química , Sulfetos/química , Tempo (Meteorologia) , Poluentes do Solo/análise
2.
J Ind Microbiol Biotechnol ; 45(8): 669-680, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29858724

RESUMO

Chemical and surface analyses are carried out using Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM-EDS), atomic force microscopy (AFM), confocal laser scanning microscopy (CLSM), glow discharge spectroscopy (GDS) and extracellular surface protein quantification to thoroughly investigate the effect of supplementary As(V) during biooxidation of arsenopyrite by Acidithiobacillus thiooxidans. It is revealed that arsenic can enhance bacterial reactions during bioleaching, which can strongly influence its mobility. Biofilms occur as compact-flattened microcolonies, being progressively covered by a significant amount of secondary compounds (S n2- , S0, pyrite-like). Biooxidation mechanism is modified in the presence of supplementary As(V), as indicated by spectroscopic and microscopic studies. GDS confirms significant variations between abiotic control and biooxidized arsenopyrite in terms of surface reactivity and amount of secondary compounds with and without As(V) (i.e. 6 µm depth). CLSM and protein analyses indicate a rapid modification in biofilm from hydrophilic to hydrophobic character (i.e. 1-12 h), in spite of the decrease in extracellular surface proteins in the presence of supplementary As(V) (i.e. stressed biofilms).


Assuntos
Acidithiobacillus thiooxidans/metabolismo , Arsenicais/química , Biofilmes , Compostos de Ferro/química , Ferro/química , Minerais/química , Sulfetos/química , Arsênio/química , Interações Hidrofóbicas e Hidrofílicas , Microbiologia Industrial , Microscopia Confocal , Microscopia Eletrônica de Varredura , Oxigênio/química , Espectrofotometria , Análise Espectral Raman , Propriedades de Superfície
3.
Sci Total Environ ; 566-567: 1106-1119, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27312277

RESUMO

Bioleaching of arsenopyrite presents a great interest due to recovery of valuable metals and environmental issues. The current study aims to evaluate the arsenopyrite oxidation by Acidithiobacillus thiooxidans during 240h at different time intervals, in the presence and absence of supplementary arsenic. Chemical and electrochemical characterizations are carried out using Raman, AFM, SEM-EDS, Cyclic Voltammetry, EIS, electrophoretic and adhesion forces to comprehensively assess the surface behavior and biooxidation mechanism of this mineral. These analyses evidence the formation of pyrite-like secondary phase on abiotic control surfaces, which contrast with the formation of pyrite (FeS2)-like, orpiment (As2S3)-like and elementary sulfur and polysulfide (Sn(2-)/S(0)) phases found on biooxidized surfaces. Voltammetric results indicate a significant alteration of arsenopyrite due to (bio)oxidation. Resistive processes determined with EIS are associated with chemical and electrochemical reactions mediated by (bio)oxidation, resulting in the transformation of arsenopyrite surface and biofilm direct attachment. Charge transfer resistance is increased when (bio)oxidation is performed in the presence of supplementary arsenic, in comparison with lowered abiotic control resistances obtained in its absence; reinforcing the idea that more stable surface products are generated when As(V) is in the system. Biofilm structure is mainly comprised of micro-colonies, progressively enclosed in secondary compounds. A more compact biofilm structure with enhanced formation of secondary compounds is identified in the presence of supplementary arsenic, whereby variable arsenopyrite reactivity is linked and attributed to these secondary compounds, including Sn(2-)/S(0), pyrite-like and orpiment-like phases.


Assuntos
Acidithiobacillus thiooxidans/fisiologia , Arsênio/química , Arsenicais/metabolismo , Biofilmes , Compostos de Ferro/metabolismo , Minerais/metabolismo , Sulfetos/metabolismo , Poluentes Químicos da Água/metabolismo , Biodegradação Ambiental , Oxirredução , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA