Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Physiol Cell Physiol ; 308(2): C111-22, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25354527

RESUMO

Trivalent chromium (Cr(3+)) is a mineral nutrient reported to have beneficial effects in glycemic and cardiovascular health. In vitro and in vivo studies suggest that Cr(3+) supplementation reduces the atherogenic potential and lowers the risk of vascular inflammation in diabetes. However, effects of Cr(3+) in vascular cells under conditions of hyperglycemia, characteristic of diabetes, remain unknown. In the present study we show that a therapeutically relevant concentration of Cr(3+) (100 nM) significantly downregulates a potent proatherogenic matricellular protein, thrombospondin-1 (TSP-1), in human aortic smooth muscle cells (HASMC) stimulated with high glucose in vitro. Promoter-reporter assays reveal that this downregulation of TSP-1 expression by Cr(3+) occurs at the level of transcription. The inhibitory effects of Cr(3+) on TSP-1 were accompanied by significant reductions in O-glycosylation of cytoplasmic and nuclear proteins. Using Western blotting and immunofluorescence studies, we demonstrate that reduced protein O-glycosylation by Cr(3+) is mediated via inhibition of glutamine: fructose 6-phosphate amidotransferase, a rate-limiting enzyme of the hexosamine pathway, and O-linked N-acetylglucosamine (O-GlcNAc) transferase, a distal enzyme in the pathway that controls intracellular protein O-glycosylation. Additionally, we found that Cr(3+) attenuates reactive oxygen species formation in glucose-stimulated HASMC, suggesting an antioxidant effect. Finally, we report an antiproliferative effect of Cr(3+) that is specific for high glucose and conditions triggering elevated protein O-glycosylation. Taken together, these findings provide the first cellular evidence for a novel role of Cr(3+) to modulate aberrant vascular smooth muscle cell function associated with hyperglycemia-induced vascular complications.


Assuntos
Proliferação de Células/efeitos dos fármacos , Cromo/farmacologia , Glucose/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Trombospondina 1/antagonistas & inibidores , Aorta/efeitos dos fármacos , Aorta/metabolismo , Proliferação de Células/genética , Células Cultivadas , Frutosefosfatos/metabolismo , Glutamina/genética , Glicosilação/efeitos dos fármacos , Hexosaminas/metabolismo , Humanos , Hiperglicemia/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , N-Acetilglucosaminiltransferases/genética , Regiões Promotoras Genéticas/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/genética , Trombospondina 1/genética , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/genética
2.
Mol Endocrinol ; 22(4): 937-50, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18165437

RESUMO

Previously, we found that a loss of plasma membrane (PM) phosphatidylinositol 4,5-bisphosphate (PIP2)-regulated filamentous actin (F-actin) structure contributes to insulin-induced insulin resistance. Interestingly, we also demonstrated that chromium picolinate (CrPic), a dietary supplement thought to improve glycemic status in insulin-resistant individuals, augments insulin-regulated glucose transport in insulin-sensitive 3T3-L1 adipocytes by lowering PM cholesterol. Here, to gain mechanistic understanding of these separate observations, we tested the prediction that CrPic would protect against insulin-induced insulin resistance by improving PM features important in cytoskeletal structure and insulin sensitivity. We found that insulin-induced insulin-resistant adipocytes display elevated PM cholesterol with a reciprocal decrease in PM PIP2. This lipid imbalance and insulin resistance was corrected by the cholesterol-lowering action of CrPic. The PM lipid imbalance did not impair insulin signaling, nor did CrPic amplify insulin signal transduction. In contrast, PM analyses corroborated cholesterol and PIP2 interactions influencing cytoskeletal structure. Because extensive in vitro study documents an essential role for cytoskeletal capacity in insulin-regulated glucose transport, we next evaluated intact skeletal muscle from obese, insulin-resistant Zucker (fa/fa) rats. Because insulin resistance in these animals likely involves multiple mechanisms, findings that cholesterol-lowering restored F-actin cytoskeletal structure and insulin sensitivity to that witnessed in lean control muscle were striking. Also, experiments using methyl-beta-cyclodextrin to shuttle cholesterol into or out of membranes respectively recapitulated the insulin-induced insulin-resistance and protective effects of CrPic on membrane/cytoskeletal interactions and insulin sensitivity. These data predict a PM cholesterol basis for hyperinsulinemia-associated insulin resistance and importantly highlight the reversible nature of this abnormality.


Assuntos
Membrana Celular/metabolismo , Colesterol/metabolismo , Hiperinsulinismo/fisiopatologia , Hipoglicemiantes/farmacologia , Resistência à Insulina , Ácidos Picolínicos/farmacologia , Animais , Membrana Celular/efeitos dos fármacos , Citoesqueleto/metabolismo , Feminino , Glucose/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Hiperinsulinismo/metabolismo , Immunoblotting , Ratos , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA