Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS One ; 13(8): e0201969, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30089157

RESUMO

Candida albicans is one of the most common causes of hospital-acquired urinary tract infections (UTIs). However, azoles are poorly active against biofilms, echinocandins do not achieve clinically useful urinary concentrations, and amphotericin B exhibits severe toxicities. Thus, novel strategies are needed to prevent Candida UTIs, which are often associated with urinary catheter biofilms. We previously demonstrated that cranberry-derived proanthocyanidins (PACs) prevent C. albicans biofilm formation in an in vitro urinary model. To elucidate functional pathways unique to urinary biofilm development and PAC inhibition, we investigated the transcriptome of C. albicans in artificial urine (AU), with and without PACs. C. albicans biofilm and planktonic cells were cultivated with or without PACs. Genome-wide expression analysis was performed by RNA sequencing. Differentially expressed genes were determined using DESeq2 software; pathway analysis was performed using Cytoscape. Approximately 2,341 of 6,444 total genes were significantly expressed in biofilm relative to planktonic cells. Functional pathway analysis revealed that genes involved in filamentation, adhesion, drug response and transport were up-regulated in urinary biofilms. Genes involved in carbon and nitrogen metabolism and nutrient response were down-regulated. In PAC-treated urinary biofilms compared to untreated control biofilms, 557 of 6,444 genes had significant changes in gene expression. Genes downregulated in PAC-treated biofilms were implicated in iron starvation and adhesion pathways. Although urinary biofilms share key features with biofilms formed in other environments, many genes are uniquely expressed in urinary biofilms. Cranberry-derived PACs interfere with the expression of iron acquisition and adhesion genes within urinary biofilms.


Assuntos
Biofilmes/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Candida albicans/genética , Candidíase/microbiologia , Extratos Vegetais/farmacologia , Proantocianidinas/farmacologia , Infecções Urinárias/microbiologia , Vaccinium macrocarpon/química , Candida albicans/classificação , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Extratos Vegetais/química , Proantocianidinas/química , Transcriptoma
2.
PLoS One ; 12(5): e0176559, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28464028

RESUMO

Exposure to crude oil or its individual constituents can have detrimental impacts on fish species, including impairment of the immune response. Increased observations of skin lesions in northern Gulf of Mexico fish during the 2010 Deepwater Horizon oil spill indicated the possibility of oil-induced immunocompromisation resulting in bacterial or viral infection. This study used a full factorial design of oil exposure and bacterial challenge to examine how oil exposure impairs southern flounder (Paralichthys lethostigma) immune function and increases susceptibility to the bacteria Vibrio anguillarum, a causative agent of vibriosis. Fish exposed to oil prior to bacterial challenge exhibited 94.4% mortality within 48 hours of bacterial exposure. Flounder challenged with V. anguillarum without prior oil exposure had <10% mortality. Exposure resulted in taxonomically distinct gill and intestine bacterial communities. Mortality strongly correlated with V. anguillarum levels, where it comprised a significantly higher percentage of the microbiome in Oil/Pathogen challenged fish and was nearly non-existent in the No Oil/Pathogen challenged fish bacterial community. Elevated V. anguillarum levels were a direct result of oil exposure-induced immunosuppression. Oil-exposure reduced expression of immunoglobulin M, the major systemic fish antibody, and resulted in an overall downregulation in transcriptome response, particularly in genes related to immune function, response to stimulus and hemostasis. Ultimately, sediment-borne oil exposure impairs immune function, leading to increased incidences of bacterial infections. This type of sediment-borne exposure may result in long-term marine ecosystem effects, as oil-bound sediment in the northern Gulf of Mexico will likely remain a contamination source for years to come.


Assuntos
Doenças dos Peixes/microbiologia , Linguado/microbiologia , Petróleo/efeitos adversos , Animais , Doenças dos Peixes/imunologia , Linguado/imunologia , Imunidade/efeitos dos fármacos , Vibrio , Vibrioses/imunologia , Vibrioses/veterinária
3.
BMC Plant Biol ; 14: 118, 2014 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-24885405

RESUMO

BACKGROUND: A major step in the higher plant life cycle is the decision to leave the mitotic cell cycle and begin the progression through the meiotic cell cycle that leads to the formation of gametes. The molecular mechanisms that regulate this transition and early meiosis remain largely unknown. To gain insight into gene expression features during the initiation of meiotic recombination, we profiled early prophase I meiocytes from maize (Zea mays) using capillary collection to isolate meiocytes, followed by RNA-seq. RESULTS: We detected ~2,000 genes as preferentially expressed during early meiotic prophase, most of them uncharacterized. Functional analysis uncovered the importance of several cellular processes in early meiosis. Processes significantly enriched in isolated meiocytes included proteolysis, protein targeting, chromatin modification and the regulation of redox homeostasis. The most significantly up-regulated processes in meiocytes were processes involved in carbohydrate metabolism. Consistent with this, many mitochondrial genes were up-regulated in meiocytes, including nuclear- and mitochondrial-encoded genes. The data were validated with real-time PCR and in situ hybridization and also used to generate a candidate maize homologue list of known meiotic genes from Arabidopsis. CONCLUSIONS: Taken together, we present a high-resolution analysis of the transcriptome landscape in early meiosis of an important crop plant, providing support for choosing genes for detailed characterization of recombination initiation and regulation of early meiosis. Our data also reveal an important connection between meiotic processes and altered/increased energy production.


Assuntos
Meiose/genética , Transcriptoma/genética , Zea mays/citologia , Zea mays/genética , Simulação por Computador , Elementos de DNA Transponíveis/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Genes Mitocondriais , Estudos de Associação Genética , Hibridização In Situ , Endogamia , Mitocôndrias/genética , Pólen/citologia , Pólen/metabolismo , Edição de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Plântula/genética , Análise de Sequência de RNA , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA