Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phytomedicine ; 128: 155527, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38489888

RESUMO

BACKGROUND: Pancreatic cancer, a tumor with a high metastasis rate and poor prognosis, is among the deadliest human malignancies. Investigating effective drugs for their treatment is imperative. Moracin D, a natural benzofuran compound isolated from Morus alba L., shows anti-inflammation and anti-breast cancer properties and is effective against Alzheimer's disease. However, the effect and mechanism of Moracin D action in pancreatic cancer remain obscure. PURPOSE: To investigate the function and molecular mechanism of Moracin D action in repressing the malignant progression of pancreatic cancer. METHODS: Pancreatic cancer cells were treated with Moracin D, and cell proliferation was evaluated by cell counting kit-8 (CCK-8) and immunofluorescence assays. The clonogenicity of pancreatic cancer cells was assessed based on plate colony formation and soft agar assay. Flow cytometry was used to detect cell apoptosis. The expression of proteins related to the apoptosis pathway was determined by Western blot analysis. Moracin D and XIAP were subjected to docking by auto-dock molecular docking analysis. Ubiquitination levels of XIAP and the interaction of XIAP and PARP1 were assessed by co-immunoprecipitation analysis. Moracin D's effects on tumorigenicity were assessed by a tumor xenograft assay. RESULTS: Moracin D inhibited cell proliferation, induced cell apoptosis, and regulated the protein expression of molecules involved in caspase-dependent apoptosis pathways. Moracin D suppressed clonogenicity and tumorigenesis of pancreatic cancer cells. Mechanistically, XIAP could interact with PARP1 and stabilize PARP1 by controlling its ubiquitination levels. Moracin D diminished the stability of XIAP and decreased the expression of XIAP by promoting proteasome-dependent XIAP degradation, further blocking the XIAP/PARP1 axis and repressing the progression of pancreatic cancer. Moracin D could dramatically improve the chemosensitivity of gemcitabine in pancreatic cancer cells. CONCLUSION: Moracin D repressed cell growth and tumorigenesis, induced cell apoptosis, and enhanced the chemosensitivity of gemcitabine through the XIAP/PARP1 axis in pancreatic cancer. Moracin D is a potential therapeutic agent or adjuvant for pancreatic cancer.


Assuntos
Apoptose , Benzofuranos , Benzopiranos , Proliferação de Células , Neoplasias Pancreáticas , Poli(ADP-Ribose) Polimerase-1 , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X , Neoplasias Pancreáticas/tratamento farmacológico , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Humanos , Apoptose/efeitos dos fármacos , Poli(ADP-Ribose) Polimerase-1/metabolismo , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Animais , Benzofuranos/farmacologia , Camundongos Nus , Morus/química , Camundongos , Antineoplásicos Fitogênicos/farmacologia , Simulação de Acoplamento Molecular , Camundongos Endogâmicos BALB C , Gencitabina , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Oncogene ; 42(39): 2905-2918, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37596322

RESUMO

A Kinase Interacting Protein 1 (AKIP1) is found to be overexpressed in a variety of human cancers and associated with patients' worse prognosis. Several studies have established AKIP1's malignant functions in tumor metastasis, angiogenesis, and chemoradiotherapy resistance. However, the mechanism of AKIP1 involved in accelerating glioblastoma (GBM) progression remains unknown. Here, we showed that the expression of AKIP1 was positively correlated with the glioma pathological grades. Down-regulating AKIP1 greatly impaired the proliferation, colony formation, and tumorigenicity of GBM cells. In terms of the mechanism, AKIP1 cooperates with transcriptional factor Yin Yang 1 (YY1)-mediated Heat Shock Protein 90 Alpha Family Class A Member 1 (HSP90AA1) transcriptional activation, enhancing the stability of Epidermal Growth Factor Receptor (EGFR). YY1 was identified as a potential transcriptional factor of HSP90AA1 and directly interacts with AKIP1. The overexpression of HSP90α significantly reversed AKIP1 depletion incurred EGFR instability and the blocked cell proliferation. Moreover, we further investigated the interacted pattern between EGFR and HSP90α. These findings established that AKIP1 acted as a critical oncogenic factor in GBM and uncovered a novel regulatory mechanism in EGFR aberrant expression.


Assuntos
Glioblastoma , Glioma , Humanos , Glioblastoma/patologia , Receptores ErbB/genética , Receptores ErbB/metabolismo , Proliferação de Células/genética , Linhagem Celular Tumoral , Proteínas Nucleares/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA