Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-37907489

RESUMO

BACKGROUND: Type 2 diabetes has become a concern issue that affects the quality of life and can increase the risk of cardiac insufficiency elevating the threat to the life safety of patients. A recognized cause of cardiac insufficiency is diabetic cardiomyopathy, chronic hyperglycemia, and myocardial lipotoxicity which can reduce the myocardial contractile performance, and enhance the cardiomyocyte hypertrophy and interstitial fibrosis. The cause of diabetic cardiomyopathy is multi-factorial which includes oxidative stress, insulin resistance, inflammation, apoptosis, and autophagy. Recent clinical studies have suggested the dysbiosis of gut microbiota, secretion of metabolites, and their diffusion in to the host as to have direct detrimental effects on the cardiac contractility. MATERIAL AND METHODS: In the present paper, we have done in silico studies including molecular interaction of phytoconstituents of Tinospora cordifolia against reactive oxygen species producing proteins. Whereas, in vitro studies were conducted on H9C2 cardiac cells including cell morphological examination, level of reactive oxygen species, cell count-viability, apoptotic status, in the presence of high glucose, trimethylamine-n-oxide, and plant extracts which were determined through cell analyzer and microscopic assays. RESULTS: The treatment of high glucose and trimethylamine-n-oxide was found to be increase the cardiac stress approximately two fold by attenuating hypertrophic conditions, oxidative stress, and apoptosis in rat cardiomyocytes, and Tinospora cordifolia was found to be a cardioprotective agent. CONCLUSION: Conclusively, our study has reported that the Indian medicinal plant Tinospora cordifolia has the ability to treat diabetic cardiomyopathy. Our study can open up a new herbal therapeutic strategy against diabetic cardiomyopathy.

2.
Curr Drug Targets ; 24(13): 1046-1054, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37861036

RESUMO

Advancements in biological sciences revealed the significant role of angiotensin-converting enzyme 2 (ACE2), a key cell surface receptor in various human pathologies. ACE2 is a metalloproteinase that not only functions in the regulation of Angiotensin II but also possesses some non-catalytic roles in the human body. There is considerable uncertainty regarding its protein expression, despite its presence in virtually all organs. The level of ACE2 expression and its subcellular localisation in humans may be a key determinant of susceptibility to various infections, symptoms, and outcomes of numerous diseases. Therefore, we summarize the distribution and expression pattern of ACE2 in different cell types related to all major human tissues and organs. Moreover, this review constitutes accumulated evidences of the important resources for further studies on ACE2 Inhibitory capacity via different natural compounds in order to understand its mechanism as the potential drug target in disease pathophysiology and to aid in the development of an effective therapeutic approach towards the various diseases.


Assuntos
Peptidil Dipeptidase A , Sistema Renina-Angiotensina , Humanos , Peptidil Dipeptidase A/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Angiotensina II/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-37608671

RESUMO

BACKGROUND: Dysbiosis of the gastrointestinal microbiota is not only related to the pathogenesis of intestinal disorders but also associated with extra-intestinal diseases. Various studies have revealed the role of an imbalance of intestinal microbiota and their metabolites including bile acids, indole derivatives, polyamines, and trimethylamine in the progression of various diseases. The elevated plasma level of the oxidized form of trimethylamine is associated with an increased risk of cardiovascular diseases. Literature supports that herbal medicines can modulate human health by altering the diversity of gut microbiota and their metabolites and proposes the use of prebiotics to improve dysbiotic conditions as a new way of therapeutic strategy. MATERIAL AND METHODS: In silico studies including drug likeliness, toxicity prediction, and molecular interaction of phytochemicals against trimethylamine lyase enzyme have been done. Antimicrobial activity of extracts of selected plant i.e. Syzygium aromaticum was done by disc diffusion and the protective effects of plant compounds were examined on trimethylamine-n-oxide a bacterial metabolic product induced toxicity on cardiac cells. RESULTS: The current study has found that the phytochemicals of S. aromaticum identified as nontoxic and followed the standard rules of drug likeliness and showed a significant binding affinity against trimethylamine-n-oxide producing enzymes. Furthermore, S. aromaticum extract was found to have antimicrobial potential and cardioprotective effects by reducing the production of intracellular reactive oxygen species and correcting the distorted nuclear morphology in the presence of high trimethylamine-n-oxide. CONCLUSION: Conclusively, our study explored the herbal intervention in intestinal dysbiosis and suggested a natural therapy against dysbiosis associated with cardiac disease, and S, aromaticum was found to have exceptional cardioprotective potential against TMAO induced gut dysbiosis, which provides a novel future therapeutic intervention for treating cardiovascular complications.

4.
Appl Biochem Biotechnol ; 195(4): 2618-2635, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35157239

RESUMO

The recent pandemic due to the COVID-19 virus has caused a global catastrophe. ACE2 and TMPRSS2 are recognized as key targets for viral entry into the host cells. The pandemic has led to the utilization of many synthetic drugs; however, due to various side effects, there is still no effective drug available against the virus. Several natural approaches have been devised, including herbal and ayurvedic medicines, that have proven to be effective against the COVID-19 virus. In the present study, the effect of phytocompounds of Piper longum and Ocimum sanctum on ACE2 and TRMPSS2 proteins has been studied. The in silico study is done using computational tools of networks of protein-protein interaction, molecular docking, and drug assessment in terms of physicochemical properties, drug-likeness, lipophilicity, water solubility, and pharmacokinetics. Out of selected phytoconstituents, vicenin 2, rosmarinic acid, and orientin were found to have the highest efficacy in terms of molecular interaction and drug-likeness properties against ACE2 and TMPRSS2 host receptor proteins. Our in silico study proposes the therapeutic potential of phytocompounds from Piper longum and Ocimum sanctum in modulating ACE2 and TMPRSS2 expression. Targeting ACE2 and TMPRSS2 against the SARS-CoV2 by phytomolecules can serve as a rational approach for designing future anti-COVID drugs.


Assuntos
COVID-19 , Piper , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Simulação de Acoplamento Molecular , Ocimum sanctum , RNA Viral
5.
Artigo em Inglês | MEDLINE | ID: mdl-36278448

RESUMO

Aged garlic extract (AGE) is an odorless derivative of garlic prepared by extracting garlic cloves in an aqueous solution for twenty months. During the process of aging, reactive organosulfur compounds such as allicin present in garlic are converted to their stable isoforms such as S- Allyl cysteine. The unstable organo sulfurs in garlic (Allium sativum L.) have been reported to cause problems in the gastrointestinal (GI) tract with an extremely pungent odor to attain its therapeutic potential. But these pharmacologically safer sulfur compounds of AGE have been studied and reported to have exceptional therapeutic potential in human health and various diseases. SAllyl cysteine (SAC), Diallyl disulfide (DADS), Diallyl trisulfide (DATS), S-allyl-mercaptocysteine (SAMC), are the most studied organosulfur compounds in in-vitro as well as in-vivo research. Biomedical research suggests that these phytoconstituents exhibit antioxidant, cardioprotective, cancer preventive, neuroprotective, immunomodulatory, antilipidemic, antidiabetic, hepatoprotective, and antiobesity effects. The therapeutic potential of aged garlic extract has been found to be extensively beneficial in these conditions, and provide a vast future in biomedical chemistry, herbdrug synergy and drug designing. The purpose of this review is to provide a mechanistic understanding of various organosulfur compounds of AGE in human health and disease based on data provided in the literature.


Assuntos
Alho , Humanos , Lactente , Idoso , Alho/química , Antioxidantes/uso terapêutico , Compostos de Enxofre/uso terapêutico , Extratos Vegetais/uso terapêutico
6.
Crit Rev Microbiol ; 47(5): 596-611, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34407384

RESUMO

The human gastrointestinal (GI) tract hosts trillions of microbial inhabitants involved in maintaining intestinal homeostasis, dysbiosis of which provokes a motley of pathogenic and autoimmune disorders. While the mechanisms by which the microbiota modulates human health are manifold, their liberated metabolites from ingested dietary supplements play a crucial role by bidirectionally regulating the expression of micro-ribonucleic acids (miRNAs). miRNAs are small endogenous non-coding RNAs (ncRNAs) that have been confirmed to be involved in an interplay with microbiota to regulate host gene expression. This comprehensive review focuses on key principles of miRNAs, their regulation, and crosstalk with gut microbiota to influence host gene expression in various human disorders, by bringing together important recent findings centric around miRNA-microbiota interactions in diseases along various axis of the gut with other organs. We also attempt to lay emphasis on exploiting the avenues of gut-directed miRNA therapeutics using rudimentary dietary supplements to regulate abnormal host gene expression in diseases, opening doors to an accessible and economical therapeutic strategy.


Assuntos
Microbioma Gastrointestinal , Regulação da Expressão Gênica , MicroRNAs/genética , Terapêutica , Animais , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/microbiologia , Doenças Cardiovasculares/terapia , Doenças do Sistema Digestório/genética , Doenças do Sistema Digestório/microbiologia , Doenças do Sistema Digestório/terapia , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/microbiologia , Saúde , Humanos , MicroRNAs/metabolismo , Neoplasias/genética , Neoplasias/microbiologia , Neoplasias/terapia , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/microbiologia , Doenças do Sistema Nervoso/terapia
7.
Oxid Med Cell Longev ; 2021: 8839479, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33747350

RESUMO

Black berry (Syzygium cumini) fruit is useful in curing diabetic complications; however, its role in diabetes-induced cardiomyopathy is not yet known. In this study, we investigated the regulation of gelatinase-B (MMP-9) by S. cumini methanol seed extract (MSE) in diabetic cardiomyopathy using real-time PCR, RT-PCR, immunocytochemistry, gel diffusion assay, and substrate zymography. The regulatory effects of MSE on NF-κB, TNF-α, and IL-6 were also examined. Identification and estimation of polyphenol constituents present in S. cumini extract were carried out using reverse-phase HPLC. Further, in silico docking studies of identified polyphenols with gelatinase-B were performed to elucidate molecular level interaction in the active site of gelatinase-B. Docking studies showed strong interaction of S. cumini polyphenols with gelatinase-B. Our findings indicate that MSE significantly suppresses gelatinase-B expression and activity in high-glucose- (HG-) stimulated cardiomyopathy. Further, HG-induced activation of NF-κB, TNF-α, and IL-6 was also remarkably reduced by MSE. Our results suggest that S. cumini MSE may be useful as an effective functional food and dietary supplement to regulate HG-induced cardiac stress through gelatinase.


Assuntos
Anti-Inflamatórios/farmacologia , Hiperglicemia/patologia , Metaloproteinase 9 da Matriz/metabolismo , Miócitos Cardíacos/patologia , Estresse Oxidativo , Extratos Vegetais/farmacologia , Sementes/química , Syzygium/química , Animais , Linhagem Celular , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Cromatografia Líquida de Alta Pressão , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Glucose , Hiperglicemia/genética , Inflamação/patologia , Interleucina-6/metabolismo , Metaloproteinase 9 da Matriz/genética , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/enzimologia , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fenóis/farmacologia , Transporte Proteico/efeitos dos fármacos , Ratos , Especificidade por Substrato/efeitos dos fármacos , Termodinâmica , Fator de Necrose Tumoral alfa/metabolismo
8.
Front Nutr ; 7: 564352, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33344490

RESUMO

Diabetic cardiomyopathy (DCM) is an outcome of disturbances in metabolic activities through oxidative stress, local inflammation, and fibrosis, as well as a prime cause of fatality worldwide. Cardiovascular disorders in diabetic individuals have become a challenge in diagnosis and formulation of treatment prototype. It is necessary to have a better understanding of cellular pathophysiology that reveal the therapeutic targets and prevent the progression of cardiovascular diseases due to hyperglycemia. Critical changes in levels of collagen and integrin have been observed in the extracellular matrix of heart, which was responsible for cardiac remodeling in diabetic patients. This review explored the understanding of the mechanisms of how the phytochemicals provide cardioprotection under diabetes along with the caveats and provide future perspectives on these agents as prototypes for the development of drugs for managing DCM. Thus, here we summarized the effect of various plant extracts and natural polyphenols tested in preclinical and cell culture models of diabetic cardiomyopathy. Further, the potential use of selected polyphenols that improved the therapeutic efficacy against diabetic cardiomyopathy is also illustrated.

9.
Mol Cell Biochem ; 442(1-2): 81-96, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-28929270

RESUMO

Doxorubicin (Dox) is an effective anti-cancer drug with severe reported cardiotoxicity. Cardiovascular risks associated with present cancer therapeutics demand urgent attention. There has been a growing interest in naturally occurring compounds to improve the therapeutic index as well as prevent non-tumour tissues from sustaining chemotherapy-induced damages. In the present study, the effects of curcumin, a polyphenol isolated from Curcuma longa and well known for its anti-oxidative, anti-cancerous and anti-inflammatory properties, was studied in relation to the Dox-induced cardiotoxicity. As literature suggests conflicting role of curcumin in Dox-induced cardiotoxicity, concentration- and time-dependent studies were conducted to study the different curcumin effects. H9C2 cardiomyoblasts were used in the study and cell viability assays were done to study Dox-induced cellular death. Drug uptake assay for Dox was performed followed by cellular growth inhibition analysis by FACS Calibur. Morphological alterations, intracellular ROS levels and mitochondrial integrity were observed by fluorescent-based microscopic studies. Catalases and superoxide dismutase-inbuilt anti-oxidant enzyme activities were studied, and it was observed that Dox-dependent cardiotoxicity occurs through ROS overproduction by exaggerating the inbuilt anti-oxidant mechanism. Expression analysis for cell death and ROS markers-BCl2, Bax, SOD, catalase-was investigated by semi-quantitative RT-PCR, and the Dox-induced stress on cardiac cells was confirmed. Initiator and effector caspases activity analysis also confirmed these findings. Our study proposes that curcumin exerts time-dependent responses on Dox-induced cardiotoxicity, where parallel treatment potentiates and pre-treatment suppresses the Dox-induced toxicity in H9C2 cardiomyoblasts. In conclusion, pre-treatment of curcumin suppresses the Dox-induced cardiotoxicity and holds a great potential as future cardio-oncological therapeutics.


Assuntos
Curcumina/farmacologia , Doxorrubicina/efeitos adversos , Mitocôndrias Cardíacas/metabolismo , Mioblastos Cardíacos/metabolismo , Animais , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/metabolismo , Cardiotoxicidade/patologia , Morte Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Mitocôndrias Cardíacas/patologia , Mioblastos Cardíacos/patologia , Ratos , Espécies Reativas de Oxigênio/metabolismo
10.
Environ Toxicol Pharmacol ; 39(1): 384-91, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25555260

RESUMO

Skin is frequently exposed to a variety of environmental and chemical agents that accelerate ageing. External stress such as UV radiations (UVR) and environmental pollutants majorly deteriorate the skin morphology, by activating certain intrinsic factors such as Reactive Oxygen Species (ROS) which trigger the activation of Matrix Metalloproteinases (MMPs) and inflammatory responses hence damaging the extracellular matrix (ECM) components. To counter this, an exogenous supply of anti-oxidants, is required since the endogenous anti-oxidant system cannot alone suffice the need. Bio-prospecting of natural resources for anti-oxidants has hence been intensified. Immense research is being carried out to identify potential plants with potent anti-oxidant activity against skin ageing. This review summarizes the major factors responsible for premature skin ageing and the plants being targeted to lessen the impact of those.


Assuntos
Antioxidantes/farmacologia , Poluentes Ambientais/toxicidade , Envelhecimento da Pele/efeitos dos fármacos , Animais , Humanos , Extratos Vegetais/farmacologia , Plantas Medicinais , Espécies Reativas de Oxigênio/metabolismo , Envelhecimento da Pele/efeitos da radiação , Raios Ultravioleta
11.
Environ Sci Pollut Res Int ; 21(13): 7956-72, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24659402

RESUMO

Pesticide-induced toxicity is a serious issue which has resulted in plethora of diseases all over the world. The organophosphate pesticide malathion has caused many incidents of poisoning such as cardiac manifestations. The present study was designed to evaluate the effect of Syzygium cumini on malathion-induced cardiotoxicity. Dose optimization of malathion and polyphenols such as curcumin, (−)-epicatechin, gallic acid, butylated hydroxyl toluene, etc. was done by MTT cell proliferation assay. Nuclear deformities, ROS production, and integrity of extra cellular matrix components were analyzed by different techniques. S. cumini methanolic pulp extract (MPE), a naturally derived gallic acid-enriched antioxidant was taken to study its effect on malathion-induced toxicity. Nuclear deformities, ROS production, and integrity of extra cellular matrix components were also analyzed. Twenty micrograms per milliliter LD50 dose of malathion was found to cause stress-mediated responses in H9C2 cell line. Among all the polyphenols, gallic acid showed the most significant protection against stress. Gallic acid-enriched methanolic S. cumini pulp extract (MPE) showed 59.76 % ± 0.05, 81.61 % ± 1.37, 73.33 % ± 1.33, 77.19 % ± 2.38 and 64.19 % ± 1.43 maximum inhibition for DPPH, ABTS, NO, H2O2 and superoxide ion, respectively, as compared to ethanolic pulp extract and aqueous pulp extract. Our study suggests that S. cumini MPE has the ability to protect against the malathion-mediated oxidative stress in cardiac myocytes.


Assuntos
Malation/toxicidade , Praguicidas/toxicidade , Extratos Vegetais/farmacologia , Syzygium/química , Antioxidantes/farmacologia , Linhagem Celular , Sequestradores de Radicais Livres , Humanos , Peróxido de Hidrogênio , Óxido Nítrico/química , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/química , Polifenóis
12.
Toxicol Lett ; 220(1): 82-7, 2013 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-23615074

RESUMO

Tea is one of the most popularly consumed beverage. Depending on the manufacturing process, different varieties of tea can be produced. The antioxidative and antimutagenic potential of tea in cardiovascular diseases, cancer and obesity have long been studied. These therapeutic and nutritional benefits of tea can be attributed to the presence of flavanoids. However, these flavanoids also have certain detrimental effects on human health when their consumption exceeds certain limits. The toxicity of these flavanoids can be attributed to the formation of reactive oxygen species in the body which causes damage to the DNA, lipid membranes etc. The aim of this review is to summarize briefly, the less studied evidences of various forms of toxicity associated with tea and its harmful effects on human health.


Assuntos
Chá/efeitos adversos , Membrana Celular/efeitos dos fármacos , DNA/efeitos dos fármacos , Dano ao DNA , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Polifenóis/efeitos adversos , Polifenóis/análise , Espécies Reativas de Oxigênio , Chá/química
13.
Cardiovasc Toxicol ; 13(3): 278-89, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23512199

RESUMO

Diabetic patients are known to have an independent risk of cardiomyopathy. Hyperglycemia leads to upregulation of reactive oxygen species (ROS) that may contribute to diabetic cardiomyopathy. Thus, agents that suppress glucose-induced intracellular ROS levels can have therapeutic potential against diabetic cardiomyopathy. Syzygium cumini is well known for its anti-diabetic potential, but its cardioprotective properties have not been evaluated yet. The aim of the present study is to analyze cardioprotective properties of methanolic seed extract (MSE) of S. cumini in diabetic in vitro conditions. ROS scavenging activity of MSE was studied in glucose-stressed H9C2 cardiac myoblasts after optimizing the safe dose of glucose and MSE by 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl tetrazolium bromide. 2',7'-dichlorfluorescein diacetate staining and Fluorescence-activated cell sorting analysis confirmed the suppression of ROS production by MSE in glucose-induced cells. The intracellular NO and H2O2 radical-scavenging activity of MSE was found to be significantly high in glucose-induced cells. Exposure of glucose-stressed H9C2 cells to MSE showed decline in the activity of catalase and superoxide dismutase enzymes and collagen content. 4',6-diamidino-2-phenylindole, propidium iodide and 10-N-nonyl-3,6-bis (dimethylamino) acridine staining revealed that MSE protects myocardial cells from glucose-induced stress. Taken together, our findings revealed that the well-known anti-diabetic S. cumini can also protect the cardiac cells from glucose-induced stress.


Assuntos
Cardiotônicos , Glucose/antagonistas & inibidores , Miócitos Cardíacos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Syzygium/química , Catalase/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Corantes , Citometria de Fluxo , Sequestradores de Radicais Livres , Glucose/toxicidade , Humanos , Peróxido de Hidrogênio/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Metanol , Óxido Nítrico/metabolismo , Extratos Vegetais/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Sementes/química , Solventes , Superóxido Dismutase/metabolismo
14.
J Pharm Pharmacol ; 63(12): 1604-12, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22060292

RESUMO

OBJECTIVES: This study was designed to evaluate the effect of curcumin on H9c2 cardiac cell line and primary rat cardiac myocytes, using purified noradrenaline as a hypertrophy-inducing agent. METHODS: The concentration of curcumin at which cells were treated was determined by MTT (3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay. The effect of this safe dose in preventing noradrenaline-induced cardiac hypertrophy was assessed by biochemical analysis (estimating total protein content), molecular analysis (using RT-PCR to study the expression of fetal genes like ANF), immunological analysis (by determining the nuclear localization of GATA-4) and electrophoretic mobility shift assay (EMSA; to study DNA binding activity of GATA-4). KEY FINDINGS: Curcumin at a concentration of 8 µm was found to suppress the increase in cell size, protein content and enhanced marker gene expression (ANF) caused by noradrenaline. Immunocytochemistry and Western blot analysis showed that curcumin suppressed the localization of transcription factor GATA-4 in the nucleus. It also showed a reduced DNA-binding activity in the presence of noradrenaline as confirmed by EMSA. CONCLUSIONS: These findings suggest that curcumin reduces the hypertrophic marker gene expression by inhibiting nuclear localization and DNA binding activity of GATA-4. Thus it has a great anti-hypertrophic potential.


Assuntos
Cardiomegalia/prevenção & controle , Curcumina/farmacologia , Miócitos Cardíacos/ultraestrutura , Norepinefrina/antagonistas & inibidores , Animais , Animais Recém-Nascidos , Western Blotting , Cardiomegalia/induzido quimicamente , Núcleo Celular/efeitos dos fármacos , Tamanho Celular/efeitos dos fármacos , Sobrevivência Celular , Células Cultivadas , Citosol/química , Citosol/metabolismo , DNA/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Fator de Transcrição GATA4/metabolismo , Expressão Gênica/efeitos dos fármacos , Ventrículos do Coração/citologia , Imuno-Histoquímica , Miócitos Cardíacos/efeitos dos fármacos , Norepinefrina/toxicidade , RNA/biossíntese , RNA/genética , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA