Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 20(1): 278, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35701758

RESUMO

BACKGROUND: As Traditional Chinese Medicine (TCM) drugs, Huangqi and Danshen are always applied in combination for spinal cord injury (SCI) treatment based on the compatibility theory of TCM. Astragalus Polysaccharidesis (APS) and Tanshinone IIA (TSIIA) are the main active ingredients of Huangqi and Danshen, and they both possess neuroprotective effects through antioxidant activities. However, low solubility and poor bioavailability have greatly limited their application. In recent years, selenium nanoparticles (SeNPs) have drawn enormous attention as potential delivery carrier for antioxidant drugs. RESULTS: In this study, TCM active ingredients-based SeNPs surface decorated with APS and loaded with TSIIA (TSIIA@SeNPs-APS) were successfully synthesized under the guidance of the compatibility theory of TCM. Such design improved the bioavailability of APS and TSIIA with the benefits of high stability, efficient delivery and highly therapeutic efficacy for SCI treatment illustrated by an improvement of the antioxidant protective effects of APS and TSIIA. The in vivo experiments indicated that TSIIA@SeNPs-APS displayed high efficiency of cellular uptake and long retention time in PC12 cells. Furthermore, TSIIA@SeNPs-APS had a satisfactory protective effect against oxidative stress-induced cytotoxicity in PC12 cells by inhibiting excessive reactive oxygen species (ROS) production, so as to alleviate mitochondrial dysfunction to reduce cell apoptosis and S phase cell cycle arrest, and finally promote cell survival. The in vivo experiments indicated that TSIIA@SeNPs-APS can protect spinal cord neurons of SCI rats by enhancing GSH-Px activity and decreasing MDA content, which was possibly via the metabolism of TSIIA@SeNPs-APS to SeCys2 and regulating antioxidant selenoproteins to resist oxidative stress-induced damage. CONCLUSIONS: TSIIA@SeNPs-APS exhibited promising therapeutic effects in the anti-oxidation therapy of SCI, which paved the way for developing the synergistic effect of TCM active ingredients by nanotechnology to improve the efficacy as well as establishing novel treatments for oxidative stress-related diseases associated with Se metabolism and selenoproteins regulation.


Assuntos
Nanopartículas , Selênio , Traumatismos da Medula Espinal , Animais , Antioxidantes , Medicina Tradicional Chinesa , Ratos , Selênio/farmacologia , Selenoproteínas , Traumatismos da Medula Espinal/tratamento farmacológico
2.
J Mater Chem B ; 7(16): 2648-2656, 2019 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32254998

RESUMO

Spinal cord injury (SCI) remains a challenging clinical problem worldwide, due to the lack of effective drugs for precise treatment. Among the complex pathophysiological events following SCI, reactive oxygen species (ROS) overproduction plays a particularly significant role. As therapeutic agents for neurological diseases, tetramethylpyrazine (TMP) and monosialotetrahexosylganglioside (GM1) have been widely used in the clinical treatment of SCI. Our previous studies have reported that functionalized selenium nanoparticles (SeNPs) exhibit excellent antioxidant activity against oxidative stress-related diseases. Therefore, in this study, novel multifunctionalized SeNPs decorated with polysaccharide-protein complex (PTW)/PG-6 peptide and loaded with TMP/GM1 were rationally designed and synthesized, which exhibited a satisfactory size distribution and superior stability. Furthermore, the protective effects of SeNPs@GM1/TMP on PC12 cells against tert-butyl hydroperoxide (t-BOOH)-induced cytotoxicity and the underlying mechanisms were also explored. Flow cytometric analysis indicated that SeNPs@GM1/TMP showed strongly protective effects against t-BOOH-induced G2/M phase arrest and apoptosis. Moreover, we found that SeNPs@GM1/TMP could attenuate ROS overproduction to prevent mitochondria dysfunction via inhibiting the activation of p53 and MAPK pathways. Effects of SeNPs@GM1/TMP on functional recovery after SCI were evaluated by the Basso-Beattie-Bresnahan (BBB) locomotion scale, inclined plane test, and footprint analysis. The results of hematoxylin-eosin staining and Nissl staining also showed that SeNPs@GM1/TMP provided a neuroprotective effect in SCI rats. This finding suggests that SeNPs@GM1/TMP could be further developed as a promising nanomedicine for efficient SCI treatment.


Assuntos
Antioxidantes/administração & dosagem , Nanopartículas/administração & dosagem , Fármacos Neuroprotetores/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Selênio/administração & dosagem , Traumatismos da Medula Espinal/tratamento farmacológico , Animais , Antioxidantes/química , Sobrevivência Celular/efeitos dos fármacos , Feminino , Mitocôndrias/metabolismo , Nanopartículas/química , Neurônios/efeitos dos fármacos , Neurônios/patologia , Fármacos Neuroprotetores/química , Células PC12 , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Selênio/química , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Medula Espinal/patologia , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia
3.
Adv Mater ; 26(33): 5846-50, 2014 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-25043512

RESUMO

An artificial bio-capacitor system is established, consisting of the proton-pump protein proteorhodopsin and a modified alumina nanochannel, inspired by the capacitor-like behavior of plasma membranes realized through the cooperation of ion-pump and ion-channel proteins. Capacitor-like features of this simplified system are realized and identified, and the photocurrent duration time can be modulated by nanochannel modification to obtain favorable square-wave currents.


Assuntos
Óxido de Alumínio/química , Materiais Biomiméticos/química , Equipamentos e Provisões Elétricas , Luz , Nanotecnologia/métodos , Rodopsina/química , Desenho de Equipamento , Teste de Materiais , Membranas Artificiais , Rodopsinas Microbianas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA