Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Complement Med Ther ; 20(1): 293, 2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-32993632

RESUMO

BACKGROUND: Diabetes mellitus is a chronic disease characterized by hyperglycemia that may occur due to genetic, environmental or lifestyle factors. Natural remedies have been used to treat diabetes since long and many antidiabetic compounds of varied efficacies have been isolated from medicinal plants. Rhazya stricta has been used for decades for the treatment of diabetes mellitus and associated ailments. Considering the folkloric use of R. stricta against diabetes, it was aimed to investigate the effectiveness of its root extracts against diabetes through in vitro assays and in vivo studies using animal model along with phytochemical profiling through GCMS. METHODS: Various fractions of Rhazya stricta obtained through column chromatography were evaluated for a variety of assays including α-glucosidase, Dipeptidyl peptidase-IV (DPP-IV), ß-secretase and Glucagon-like peptide-1 (GLP-1) secretion studies. For the in vivo studies the alloxan-induced diabetic mice were treated with root extracts and blood glucose levels, HbA1C, and other biochemical markers along with the histological study of the liver were done. The phytochemical identification was performed using an Agilent 7890B GC coupled to a 7010 Triple Quadrupole (MS/MS) system. GraphPad Prism software version 5.01 was used for statistical analysis. RESULTS: Majority of the extract fractions showed excellent results against diabetes by inhibiting enzymes DPP-IV (Up to 61%) and ß-secretase (Up to 83%) with IC50s 979 µg/ml and 169 µg/ml respectively with increase in the GLP1 secretion. The results of in vivo studies indicated a marked reduction in blood glucose and HbA1c levels along with positive effects on other parameters like lipid profile, liver functions and renal functions of extract-treated mice as compared to control. The histological examination of the liver demonstrated hepatoprotective effects against diabetes led changes and various classes of phytochemicals were also identified through GCMS in different fractions. CONCLUSION: The results revealed strong antidiabetic activity of R. stricta root with the potential to protect body organs against diabetic changes. Moreover, a variety of phytochemicals has also been identified through GCMS that might be responsible for the antidiabetic potential of Rhazya stricta root.


Assuntos
Apocynaceae , Diabetes Mellitus Experimental/tratamento farmacológico , Hipoglicemiantes/farmacologia , Extratos Vegetais/farmacologia , Aloxano , Animais , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Paquistão , Raízes de Plantas
2.
Sci Rep ; 10(1): 8884, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32483287

RESUMO

Capparis spinosa is an edible medicinal plant which is considered as an excellent source of rutin. Rutin is a glycoside of the flavonoid quercetin that has been reported to have a beneficial role in controlling various diseases such as hypertension, arteriosclerosis, diabetes, and obesity. In this study, the partial cDNA of four genes involved in the rutin biosynthetic pathway including 4-coumaroyl CoA ligase (4CL), flavonoid 3'-hydroxylase (F3'H), flavonol synthase (FLS) and flavonol-3-O-glucoside L-rhamnosyltransferase (RT) were identified in C.spinosa plants for the first time. The protein sequences of these genes shared high similarity with the same proteins in other plant species. Subsequently, the expression patterns of these genes as well as rutin accumulation in C.spinosa leaves treated with different concentrations of salicylic acid (SA) and methyl jasmonate (MeJA) and also in different tissues of Caper plants treated with 100 mgL-1 SA and 150 µM MeJA were evaluated. The expression of all four genes was clearly up-regulated and rutin contents increased in response to MeJA and SA treatments after 24 h. The highest rutin contents (5.30 mgg-1 DW and 13.27 mgg-1 DW), as well as the highest expression levels of all four genes, were obtained using 100 mgL-1 SA and 150 µM MeJA, respectively. Among the different tissues, the highest rutin content was observed in young leaves treated with 150 µM MeJA, which corresponded to the expression of related genes, especially RT, as a key gene in the rutin biosynthetic pathway. These results suggest that rutin content in various tissues of C. spinosa can be enhanced to a significant extent by MeJA and SA treatments and the gene expression patterns of rutin-biosynthesis-related genes are regulated by these elicitors.


Assuntos
Vias Biossintéticas/efeitos dos fármacos , Capparis/crescimento & desenvolvimento , Perfilação da Expressão Gênica/métodos , Reguladores de Crescimento de Plantas/farmacologia , Rutina/biossíntese , Acetatos/farmacologia , Sequência de Aminoácidos , Capparis/efeitos dos fármacos , Capparis/genética , Capparis/metabolismo , Ciclopentanos/farmacologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Especificidade de Órgãos , Oxilipinas/farmacologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Ácido Salicílico/farmacologia , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA