Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(20)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36293098

RESUMO

Methylmercury (MeHg) is a well-known environmental contaminant, particularly harmful to the developing brain. The main human dietary exposure to MeHg occurs through seafood consumption. However, seafood also contains several nutrients, including selenium, which has been shown to interact with MeHg and potentially ameliorate its toxicity. The aim of this study was to investigate the combined effects of selenium (as selenomethionine; SeMet) and MeHg on mercury accumulation in tissues and the effects concomitant dietary exposure of these compounds exert on the hippocampal proteome and transcriptome in mice. Adolescent male BALB/c mice were exposed to SeMet and two different doses of MeHg through their diet for 11 weeks. Organs, including the brain, were sampled for mercury analyses. Hippocampi were collected and analyzed using proteomics and transcriptomics followed by multi-omics bioinformatics data analysis. The dietary presence of SeMet reduced the amount of mercury in several organs, including the brain. Proteomic and RNA-seq analyses showed that both protein and RNA expression patterns were inversely regulated in mice receiving SeMet together with MeHg compared to MeHg alone. Several pathways, proteins and RNA transcripts involved in conditions such as immune responses and inflammation, oxidative stress, cell plasticity and Alzheimer's disease were affected inversely by SeMet and MeHg, indicating that SeMet can ameliorate several toxic effects of MeHg in mice.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Selênio , Masculino , Adolescente , Animais , Humanos , Camundongos , Compostos de Metilmercúrio/toxicidade , Compostos de Metilmercúrio/análise , Selenometionina/farmacologia , Transcriptoma , Selênio/metabolismo , Proteoma/metabolismo , Proteômica , Camundongos Endogâmicos BALB C , Dieta , Antioxidantes , Hipocampo/metabolismo , RNA
2.
Artigo em Inglês | MEDLINE | ID: mdl-26459986

RESUMO

The main object of this study was to evaluate the impact of different levels of vitamin A (VA) and arachidonic acid (ARA) in relation to eicosapentaenoic acid (EPA) on mineralization and gene expression in Atlantic cod larvae (Gadus morhua). First-feeding larvae were fed enriched rotifers from start-feeding until 29 days post hatch (dph). Larvae in four tanks were fed one of the following diets: control (EPA/ARA ratio: 15.8, 0.9µg VA g(-1)), control+VA (EPA/ARA ratio: 15.8, 7.8µg VA g(-1)), High ARA (EPA/ARA ratio: 0.9, 1.5µg VA g(-1)) or High ARA+VA (EPA/ARA ratio: 0.9, 12.0µg VA g(-1)). Larvae fed High ARA+VA were shorter at 29dph compared to the other groups and had significantly less mineralized bones when comparing larvae of similar size, showing interaction effects between VA and ARA. Although transcriptomic analysis did not reveal any interaction effects, a higher number of genes were differentially expressed in the high ARA fed larvae compared to control+VA fed larvae. Furthermore, bglap1, bglap2 and col10a1 were all down-regulated in larvae fed High ARA-diets and to a greater extent than larvae fed VA supplemented diet, indicating an additive effect on mineralization. In conclusion, this study showed that the dietary increase in ARA and VA altered the skeletal metabolism during larval development, most likely through signaling pathways specific for each nutrient rather than an interaction. The present study also demonstrates that VA could affect the larval response to ARA, even within the accepted non-toxic/non-deficient range.


Assuntos
Ácido Araquidônico/metabolismo , Calcificação Fisiológica , Gadus morhua/genética , Gadus morhua/fisiologia , Transcrição Gênica , Vitamina A/metabolismo , Animais , Calcificação Fisiológica/genética , Dieta , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Larva , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real
3.
PLoS One ; 10(9): e0136409, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26331947

RESUMO

BACKGROUND: Essential fatty acid status as well as docosahexaenoic acid (DHA, 22:6n-3) declines during pregnancy and lactation. As a result, the DHA status may not be optimal for child development and may increase the risk for maternal postpartum depression. The objective of this study was to assess changes in the maternal fatty acid status from pregnancy to 12 months postpartum, and to study the impact of seafood consumption on the individual fatty acid status. METHODS: Blood samples and seafood consumption habits (gestation week 28, and three-, six- and 12 months postpartum) were collected in a longitudinal observational study of pregnant and postpartum women (n = 118). Multilevel linear modeling was used to assess both changes over time in the fatty acid status of red blood cells (RBC), and in the seafood consumption. RESULTS: Six fatty acids varied the most (>80%) across the four time points analyzed, including the derivative of the essential α-linoleic acid (ALA, 18:3n-3), DHA; the essential linoleic acid (LA, 18:2 n-6); and the LA derivative, arachidonic acid (AA, 20:4n-6). Over all, a large variation in individuals' DHA- and AA status was observed; however, over the 15-month study period only small inter-individual differences in the longitudinal trajectory of DHA- and AA abundance in the RBC were detected. The median intake of seafood was lower than recommended. Regardless, the total weekly frequency of seafood and eicosapentaenoic acid (EPA, 20:5n-3)/DHA-supplement intake predicted the maternal level of DHA (µg/g RBC). CONCLUSION: The period of depletion of the maternal DHA status during pregnancy and lactation, seem to turn to repletion from about six months postpartum towards one year after childbirth, irrespective of RBC concentration of DHA during pregnancy. Seafood and EPA/DHA-supplement intake predicted the DHA levels over time. TRIAL REGISTRATION: www.helseforskning.etikkom.no 2009/570/REC, project number: 083.09.


Assuntos
Ácidos Docosa-Hexaenoicos/sangue , Ácidos Graxos Essenciais/sangue , Período Pós-Parto/sangue , Adulto , Depressão Pós-Parto/sangue , Dieta , Ácido Eicosapentaenoico/sangue , Eritrócitos/química , Feminino , Humanos , Estudos Longitudinais , Gravidez , Alimentos Marinhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA