Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biomed Res Int ; 2021: 6661191, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34095308

RESUMO

The recent COVID-19 pandemic has impacted nearly the whole world due to its high morbidity and mortality rate. Thus, scientists around the globe are working to find potent drugs and designing an effective vaccine against COVID-19. Phytochemicals from medicinal plants are known to have a long history for the treatment of various pathogens and infections; thus, keeping this in mind, this study was performed to explore the potential of different phytochemicals as candidate inhibitors of the HR1 domain in SARS-CoV-2 spike protein by using computer-aided drug discovery methods. Initially, the pharmacological assessment was performed to study the drug-likeness properties of the phytochemicals for their safe human administration. Suitable compounds were subjected to molecular docking to screen strongly binding phytochemicals with HR1 while the stability of ligand binding was analyzed using molecular dynamics simulations. Quantum computation-based density functional theory (DFT) analysis was constituted to analyze the reactivity of these compounds with the receptor. Through analysis, 108 phytochemicals passed the pharmacological assessment and upon docking of these 108 phytochemicals, 36 were screened passing a threshold of -8.5 kcal/mol. After analyzing stability and reactivity, 5 phytochemicals, i.e., SilybinC, Isopomiferin, Lycopene, SilydianinB, and Silydianin are identified as novel and potent candidates for the inhibition of HR1 domain in SARS-CoV-2 spike protein. Based on these results, it is concluded that these compounds can play an important role in the design and development of a drug against COVID-19, after an exhaustive in vitro and in vivo examination of these compounds, in future.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Compostos Fitoquímicos/farmacologia , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Antivirais/química , Sítios de Ligação , COVID-19/virologia , Teoria da Densidade Funcional , Descoberta de Drogas , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Compostos Fitoquímicos/química , Domínios Proteicos , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/isolamento & purificação
2.
Comb Chem High Throughput Screen ; 23(8): 797-804, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32342804

RESUMO

BACKGROUND: ZIKV has been a well-known global threat, which hits almost all of the American countries and posed a serious threat to the entire globe in 2016. The first outbreak of ZIKV was reported in 2007 in the Pacific area, followed by another severe outbreak, which occurred in 2013/2014 and subsequently, ZIKV spread to all other Pacific islands. A broad spectrum of ZIKV associated neurological malformations in neonates and adults has driven this deadly virus into the limelight. Though tremendous efforts have been focused on understanding the molecular basis of ZIKV, the viral proteins of ZIKV have still not been studied extensively. OBJECTIVES: Herein, we report the first and the novel predictor for the identification of ZIKV proteins. METHODS: We have employed Chou's pseudo amino acid composition (PseAAC), statistical moments and various position-based features. RESULTS: The predictor is validated through 10-fold cross-validation and Jackknife testing. In 10- fold cross-validation, 94.09% accuracy, 93.48% specificity, 94.20% sensitivity and 0.80 MCC were achieved while in Jackknife testing, 96.62% accuracy, 94.57% specificity, 97.00% sensitivity and 0.88 MCC were achieved. CONCLUSION: Thus, ZIKVPred-PseAAC can help in predicting the ZIKV proteins efficiently and accurately and can provide baseline data for the discovery of new drugs and biomarkers against ZIKV.


Assuntos
Aminoácidos/química , Antivirais/química , Biologia Computacional/métodos , Proteínas Virais/química , Zika virus/química , Algoritmos , Sequência de Aminoácidos , Antivirais/farmacologia , Biomarcadores/metabolismo , Bases de Dados de Proteínas , Avaliação Pré-Clínica de Medicamentos , Humanos , Ligação Proteica
3.
Curr Drug Discov Technol ; 17(3): 397-411, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-30767744

RESUMO

BACKGROUND: Alzheimer's Disease (AD) has become the most common age-dependent disease of dementia. The trademark pathologies of AD are the presence of amyloid aggregates in neurofibrils. Recently phytochemicals being considered as potential inhibitors against various neurodegenerative, antifungal, antibacterial and antiviral diseases in human beings. OBJECTIVE: This study targets the inhibition of BACE-1 by phytochemicals using in silico drug discovery analysis. METHODS: A total of 3150 phytochemicals were collected from almost 25 different plants through literature assessment. The ADMET studies, molecular docking and density functional theory (DFT) based analysis were performed to analyze the potential inhibitory properties of these phytochemicals. RESULTS: The ADMET and docking results exposed seven compounds that have high potential as an inhibitory agent against BACE-1 and show binding affinity >8.0 kcal/mol against BACE-1. They show binding affinity greater than those of various previously reported inhibitors of BACE-1. Furthermore, DFT based analysis has shown high reactivity for these seven phytochemicals in the binding pocket of BACE- 1, based on ELUMO, EHOMO and Kohn-Sham energy gap. All seven phytochemicals were testified (as compared to experimental ones) as novel inhibitors against BACE-1. CONCLUSION: Out of seven phytochemicals, four were obtained from plant Glycyrrhiza glabra i.e. Shinflavanone, Glabrolide, Glabrol and PrenyllicoflavoneA, one from Huperzia serrate i.e. Macleanine, one from Uncaria rhynchophylla i.e. 3a-dihydro-cadambine and another one was from VolvalerelactoneB from plant Valeriana-officinalis. It is concluded that these phytochemicals are suitable candidates for drug/inhibitor against BACE-1, and can be administered to humans after experimental validation through in vitro and in vivo trials.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Descoberta de Drogas/métodos , Compostos Fitoquímicos/farmacologia , Fitoterapia/métodos , Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/ultraestrutura , Ácido Aspártico Endopeptidases/metabolismo , Ácido Aspártico Endopeptidases/ultraestrutura , Sítios de Ligação/efeitos dos fármacos , Glycyrrhiza/química , Humanos , Lycopodiaceae/química , Simulação de Acoplamento Molecular , Compostos Fitoquímicos/uso terapêutico , Valeriana/química
4.
Braz. J. Pharm. Sci. (Online) ; 56: e17420, 2020. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1142490

RESUMO

Dengue fever has emerged as a big threat to human health since the last decade owing to high morbidity with considerable mortalities. The proposed study aims at the in silico investigation of the inhibitory action against DENV4-NS1 of phytochemicals from two local medicinal plants of Pakistan. Non-Structural Protein 1 of Dengue Virus 4 (DENV4-NS1) is known to be involved in the replication and maturation of viron in the host cells. A total of 129 phytochemicals (50 from Tanacetum parthenium and 79 from Silybum marianum) were selected for this study. The tertiary structure of DENV4-NS1 was predicted based on homology modelling using Modeller 9.18 and the structural stability was evaluated using molecular dynamics simulations. Absorption, distribution, metabolism, excretion and toxicity (ADMET) along with the drug-likeness was also predicted for these phytochemicals using SwissADME and PreADMET servers. The results of ADMET and drug-likeness predictions exhibited that 54 phytochemicals i.e. 25 from Tanacetum parthenium and 29 from Silybum marianum showed effective druglikeness. These phytochemicals were docked against DENV4-NS1 using AutoDock Vina and 18 most suitable phytochemicals with binding affinities ≤ -6.0 kcal/mol were selected as potential inhibitors for DENV4-NS1. Proposed study also exploits the novel inhibitory action of Jaceidin, Centaureidin, Artecanin, Secotanaparthenolide, Artematin, Schizolaenone B, Isopomiferin, 6, 8-Diprenyleriodictyol, and Anthraxin against dengue virus. It is concluded that the screened 18 phytochemicals have strong inhibition potential against Dengue Virus 4.


Assuntos
Simulação por Computador , Proteínas/classificação , Dengue , Vírus da Dengue , Compostos Fitoquímicos/análise , Plantas Medicinais/metabolismo , Farmacocinética , Tanacetum parthenium/efeitos adversos , Simulação de Dinâmica Molecular
5.
Braz. arch. biol. technol ; 61: e18180004, 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-974070

RESUMO

ABSTRACT Zika virus (ZIKV) is known for microcephaly and neurological disease in humans and the nonstructural proteins of ZIKV play a fundamental role in the viral replication. Among the seven nonstructural proteins, NS5 is the most conserved and largest protein. Two major functional domains of NS5 i.e. methyltransferase (MTase) and RNA-dependent RNA polymerase (RdRp) are imperative for the virus life cycle and survival. The present study explicates the inhibitory action of phytochemicals from medicinal plants against NS5 from ZIKV, leading to the identification of potential inhibitors. The crystal structure of the protein is retrieved from RCSB protein data bank. A total of 2035 phytochemicals from 505 various medicinal plants are analysed for their pharmacological properties and pharmacokinetics. Compounds having effective drug-likeness are docked against the protein and further analysed using density functional theory approach. Among the 2035 phytochemicals, 13 are selected as potential inhibitors against MTase having high binding affinities and 17 compounds are selected for RdRp. HOMO and LUMO energies are calculated for the docked compounds within and outside binding pockets of MTase and RdRp, adapting the B3LYP hybrid exchange-correlation functional with def2-SV(P) basis set. Physicochemical properties such as ionization energy, electronic chemical potential, electronegativity, electron affinity, molecular softness, molecular hardness and electrophilicity index have also been analysed for selected phytochemicals. Based upon the results, it is concluded that the selected phytochemicals are highly competent to impede the replication of the virus by inhibiting the ZIKV-NS5.

6.
J Vector Borne Dis ; 54(3): 255-262, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29097641

RESUMO

BACKGROUND & OBJECTIVES: Dengue fever, caused by dengue virus (DENV), has become a serious threat to human lives. Phytochemicals are known to have great potential to eradicate viral, bacterial and fungal-borne diseases in human beings. This study was aimed at in silico drug development against nonstructural protein 4B (NS4B) of dengue virus 4 (DENV4). METHODS: A total of 2750 phytochemicals from different medicinal plants were selected for this study. These plants grow naturally in the climate of Pakistan and India and have been used for the treatment of various pathologies in human for long-time. The ADMET studies, molecular docking and density functional theory (DFT) based analysis were carried out to determine the potential inhibitory properties of these phytochemicals. RESULTS: The ADMET analysis and docking results revealed nine phytochemicals, i.e. Silymarin, Flavobion, Derrisin, Isosilybin, Mundulinol, Silydianin, Isopomiferin, Narlumicine and Oxysanguinarine to have potential inhibitory properties against DENV and can be considered for additional in vitro and in vivo studies to assess their inhibitory effects against DENV replication. They exhibited binding affinity ≥ -8 kcal/mol against DENV4-NS4B. Furthermore, DFT based analysis revealed high reactivity for these nine phytochemicals in the binding pocket of DENV4-NS4B, based on ELUMO, EHOMO and band energy gap. INTERPRETATION & CONCLUSION: Five out of nine phytochemicals are reported for the first time as novel DENV inhibitors. These included three phytochemicals from Silybum marianum, i.e. Derrisin, Mundulinol, Isopomiferin, and two phytochemicals from Fumaria indica, i.e. Narlumicine and Oxysanguinarine. However, all the nine phytochemicals can be considered for in vitro and in vivo analysis for the development of potential DENV inhibitors.


Assuntos
Antivirais/química , Antivirais/farmacologia , Biologia Computacional/métodos , Vírus da Dengue/efeitos dos fármacos , Descoberta de Drogas/métodos , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Índia , Simulação de Acoplamento Molecular , Paquistão , Plantas Medicinais/química , Plantas Medicinais/crescimento & desenvolvimento , Proteínas não Estruturais Virais/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA