Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 196: 115557, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37776739

RESUMO

Oil spilled in marine environments can settle to the seafloor through aggregation and sedimentation processes. This has been predicted to be especially relevant in the Arctic due to plankton blooms initiated by melting sea ice. These conditions exist in the Kivalliq region in Nunavut, Canada, where elevated shipping traffic has increased the risk of accidental spills. Experimental microcosms combining surface sediment and crude oil were incubated at 4 °C over 21 weeks to evaluate the biodegradation potential of seabed microbiomes. Sediments sampled near the communities of Arviat and Chesterfield Inlet were assessed for biodegradation capabilities by combining hydrocarbon geochemistry with 16S rRNA gene and metagenomic sequencing, revealing decreased microbial diversity but enrichment of oil-degrading taxa. Alkane and aromatic hydrocarbon losses corresponded to detection of genes and genomes that encode enzymes for aerobic biodegradation of these compounds, pointing to the utility of marine microbiome surveys for predicting the fate of oil released into Arctic marine environments.


Assuntos
Microbiota , Poluição por Petróleo , Petróleo , Petróleo/metabolismo , Nunavut , RNA Ribossômico 16S/genética , Hidrocarbonetos/metabolismo , Canadá , Biodegradação Ambiental
2.
Geobiology ; 20(6): 823-836, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35993193

RESUMO

Recent studies have reported up to 1.9 × 1029 bacterial endospores in the upper kilometre of deep subseafloor marine sediments, however, little is understood about their origin and dispersal. In cold ocean environments, the presence of thermospores (endospores produced by thermophilic bacteria) suggests that distribution is governed by passive migration from warm anoxic sources possibly facilitated by geofluid flow, such as advective hydrocarbon seepage sourced from petroleum deposits deeper in the subsurface. This study assesses this hypothesis by measuring endospore abundance and distribution across 60 sites in Eastern Gulf of Mexico (EGM) sediments using a combination of the endospore biomarker 2,6-pyridine dicarboxylic acid or 'dipicolinic acid' (DPA), sequencing 16S rRNA genes of thermospores germinated in 50°C sediment incubations, petroleum geochemistry in the sediments and acoustic seabed data from sub-bottom profiling. High endospore abundance is associated with geologically active conduit features (mud volcanoes, pockmarks, escarpments and fault systems), consistent with subsurface fluid flow dispersing endospores from deep warm sources up into the cold ocean. Thermospores identified at conduit sites were most closely related to bacteria associated with the deep biosphere habitats including hydrocarbon systems. The high endospore abundance at geological seep features demonstrated here suggests that recalcitrant endospores and their chemical components (such as DPA) can be used in concert with geochemical and geophysical analyses to locate discharging seafloor features. This multiproxy approach can be used to better understand patterns of advective fluid flow in regions with complex geology like the EGM basin.


Assuntos
Sedimentos Geológicos , Petróleo , Bactérias , Sedimentos Geológicos/microbiologia , Golfo do México , Hidrocarbonetos/análise , RNA Ribossômico 16S/genética , Esporos Bacterianos/química , Esporos Bacterianos/genética
3.
Nat Commun ; 10(1): 1816, 2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-31000700

RESUMO

The lack of microbial genomes and isolates from the deep seabed means that very little is known about the ecology of this vast habitat. Here, we investigate energy and carbon acquisition strategies of microbial communities from three deep seabed petroleum seeps (3 km water depth) in the Eastern Gulf of Mexico. Shotgun metagenomic analysis reveals that each sediment harbors diverse communities of chemoheterotrophs and chemolithotrophs. We recovered 82 metagenome-assembled genomes affiliated with 21 different archaeal and bacterial phyla. Multiple genomes encode enzymes for anaerobic oxidation of aliphatic and aromatic compounds, including those of candidate phyla Aerophobetes, Aminicenantes, TA06 and Bathyarchaeota. Microbial interactions are predicted to be driven by acetate and molecular hydrogen. These findings are supported by sediment geochemistry, metabolomics, and thermodynamic modelling. Overall, we infer that deep-sea sediments experiencing thermogenic hydrocarbon inputs harbor phylogenetically and functionally diverse communities potentially sustained through anaerobic hydrocarbon, acetate and hydrogen metabolism.


Assuntos
Archaea/metabolismo , Bactérias/metabolismo , Sedimentos Geológicos/microbiologia , Microbiota/fisiologia , Petróleo/metabolismo , Acetatos/metabolismo , Archaea/genética , Archaea/isolamento & purificação , Bactérias/genética , Bactérias/isolamento & purificação , Sedimentos Geológicos/química , Hidrocarbonetos/metabolismo , Hidrogênio/metabolismo , Metagenoma , Metagenômica/métodos , México , Interações Microbianas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA