Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Environ Radioact ; 151 Pt 1: 311-320, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26555366

RESUMO

The concentrations of total dissolved uranium (U), its isotopic composition ((234)U, (235)U, (238)U) and two long lived Ra isotopes ((226)Ra and (228)Ra) in alluvial aquifers of groundwater were determined to investigate the groundwater flow pattern in the south-western (SW) Punjab, India. Particular attention was given to the spatial variability of activity ratios (ARs) of (234)U/(238)U and (226)Ra/(228)Ra to predict the possible sources and supply process of U into the water from the solid phase. The measured groundwater (234)U/(238)U ARs were ∼1 or >1 in the shallow zone (depth < 30 m) with high U concentration and <1 in the deeper zone (depth > 30 m) with relatively low U concentration. The simultaneous elevated U concentration and (234)U/(238)U ARs in waters were possibly due to differences in imprints of rock-water interactions under hydrologic conditions. However, (234)U/(238)U ARs < 1 clearly indicate the lack of recharge from surface water to groundwater leading to (234)U deficit in groundwater. This deficit might be also attributed to alpha recoil processes under strong dissolution. Overall, the decreasing pattern of (234)U/(238)U ARs observed from SE to SW or NW ward clearly indicates a groundwater flow paths from SE to SW/NW. Similarly, (226)Ra/(238)U ARs < 1 for all water samples reflect that the precursor (238)U is fairly mobile relative to (226)Ra. This might be due to unusually high amount of (238)U in groundwaters and subsequently the different geochemistry of the two isotopes. On the other hand, (226)Ra/(228)Ra ARs in groundwaters varied widely and observed about 50-300 times higher than (238)U/(232)Th ARs in granitic rocks or soils. Such elevation in ARs might be attributed to different dissolution properties of their parents during water-rock interactions or lattice damage during decay or local enrichments of uranium in the aquifers.


Assuntos
Água Subterrânea/análise , Monitoramento de Radiação , Rádio (Elemento)/análise , Urânio/análise , Poluentes Radioativos da Água/análise , Índia , Movimentos da Água
2.
J Environ Radioact ; 138: 456-9, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25223293

RESUMO

The raw water (RW) samples collected from natural sources are subjected to water treatment process, including reverse osmosis (RO), and are packed in bottles as packaged drinking water (PDW). Raw water (21 samples) taken from deep wells of Chennai and Secunderabad which are used in the production of PDW, were analysed for (234)U, (235)U, (238)U, (226)Ra, (228)Ra and (210)Pb activity concentrations. Activity Concentrations of (234)U, (235)U, (238)U, (226)Ra, (228)Ra, (210)Pb and (210)Po in PDW were also analysed. The mean activity concentrations of (234)U, (235)U, (238)U, (226)Ra, (228)Ra and (210)Pb in RW at Chennai were 12.1, ≤1.3, 7.1, 2.6, 27.5, and 16.3 mBq/L respectively. The mean activity concentrations of (234)U, (235)U, (238)U, (226)Ra, (228)Ra and (210)Pb in RW at Secunderabad were found to be 40.9, 1.7, 41.5 84.5, 100.1, and 17.0 mBq/L respectively. The mean concentrations of (234)U, (235)U, (238)U, (226)Ra, (228)Ra, (210)Pb and (210)Po in PDW at Chennai were found to be ≤1.3, ≤1.3, ≤1.3, ≤0.2, ≤1.7, 28.0 and 1.2 mBq/L at Secunderabad were found to be ≤1.3, ≤1.3, 1.7, 4.3, 5.0 and 28.1 mBq/L. The study indicated a considerable reduction in the concentration of natural radionuclides due to water treatment. The reduction ratios of RW to PDW for (234)U, (238)U, (226)Ra, (228)Ra were 97, 96, 94 and 95%. In case of (210)Pb, the PDW showed higher concentration of (210)Pb than RW. This was due to its in growth from (222)Rn which was not removed in the RO process.


Assuntos
Água Potável/análise , Poluentes Radioativos da Água/análise , Purificação da Água , Poços de Água/análise , Índia , Radioisótopos de Chumbo/análise , Monitoramento de Radiação , Rádio (Elemento)/análise , Urânio/análise
3.
Radiat Environ Biophys ; 53(4): 739-44, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25209644

RESUMO

Uranium mine workers are exposed to ore dust containing uranium and its daughter products during different mining operations. These radionuclides may pose inhalation hazards to workers during the course of their occupation. The most significant among these radionuclides is (226)Ra. The measurement of radium body burden of uranium mine workers is important to assess their internal exposure. For this purpose, the radon-in-breath measurement technique has been used in the present paper. Workers at the Jaduguda mine, India, associated with different categories of mining operations were monitored between 2001 and 2007. The measurement results indicate that workers--depending on mining operation category--show (226)Ra body burdens ranging from 0.15 to 2.85 kBq. The maximum body burden was found for workers associated with timbering operations, with an average (226)Ra body burden of 0.85 ± 0.54 kBq. Overall, the average value observed for 800 workers was 0.76 ± 0.51 kBq, which gives rise to an average effective dose of 1.67 mSv per year for inhalation and 0.21 mSv per year for ingestion.


Assuntos
Mineração , Exposição Ocupacional/análise , Rádio (Elemento)/análise , Urânio , Carga Corporal (Radioterapia) , Humanos , Índia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA