Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 3307, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34083538

RESUMO

Despite decades of intensive search for compounds that modulate the activity of particular protein targets, a large proportion of the human kinome remains as yet undrugged. Effective approaches are therefore required to map the massive space of unexplored compound-kinase interactions for novel and potent activities. Here, we carry out a crowdsourced benchmarking of predictive algorithms for kinase inhibitor potencies across multiple kinase families tested on unpublished bioactivity data. We find the top-performing predictions are based on various models, including kernel learning, gradient boosting and deep learning, and their ensemble leads to a predictive accuracy exceeding that of single-dose kinase activity assays. We design experiments based on the model predictions and identify unexpected activities even for under-studied kinases, thereby accelerating experimental mapping efforts. The open-source prediction algorithms together with the bioactivities between 95 compounds and 295 kinases provide a resource for benchmarking prediction algorithms and for extending the druggable kinome.


Assuntos
Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , Algoritmos , Benchmarking , Crowdsourcing , Bases de Dados de Produtos Farmacêuticos , Aprendizado Profundo , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Humanos , Cinética , Aprendizado de Máquina , Modelos Biológicos , Modelos Químicos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacocinética , Proteínas Quinases/química , Proteômica , Análise de Regressão
2.
Nucleic Acids Res ; 45(W1): W495-W500, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28472495

RESUMO

The advent of polypharmacology paradigm in drug discovery calls for novel chemoinformatic tools for analyzing compounds' multi-targeting activities. Such tools should provide an intuitive representation of the chemical space through capturing and visualizing underlying patterns of compound similarities linked to their polypharmacological effects. Most of the existing compound-centric chemoinformatics tools lack interactive options and user interfaces that are critical for the real-time needs of chemical biologists carrying out compound screening experiments. Toward that end, we introduce C-SPADE, an open-source exploratory web-tool for interactive analysis and visualization of drug profiling assays (biochemical, cell-based or cell-free) using compound-centric similarity clustering. C-SPADE allows the users to visually map the chemical diversity of a screening panel, explore investigational compounds in terms of their similarity to the screening panel, perform polypharmacological analyses and guide drug-target interaction predictions. C-SPADE requires only the raw drug profiling data as input, and it automatically retrieves the structural information and constructs the compound clusters in real-time, thereby reducing the time required for manual analysis in drug development or repurposing applications. The web-tool provides a customizable visual workspace that can either be downloaded as figure or Newick tree file or shared as a hyperlink with other users. C-SPADE is freely available at http://cspade.fimm.fi/.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Software , Análise por Conglomerados , Gráficos por Computador , Descoberta de Drogas , Internet , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA