RESUMO
The current study focused on the monitoring of pollution loads in the Kalpakkam coastal zone of India in terms of physico-chemical characteristics of sediment. The investigation took place at 12 sampling points around the Kalpakkam coastal zone for one year beginning from 2019. The seasonal change of nutrients in the sediment, such as nitrogen, phosphorus, potassium, total organic carbon, and particles size distribution, was calculated. Throughout the study period, the pH (7.55 to 8.99), EC (0.99 to 4.98 dS/m), nitrogen (21.74 to 58.12 kg/ha), phosphorus (7.5 to 12.9 kg/ha), potassium (218 to 399 kg/ha), total organic carbon (0.11 to 0.88%), and particle size cumulative percent of sediments (from 9.01 to 9.39%) was observed. A number of multivariate statistical techniques were used to examine the changes in sediment quality. The population means were substantially different according to the three-way ANOVA test at the 0.05 level. Principal component analysis and cluster analysis showed a substantial association with all indicators throughout all seasons, implying contamination from both natural and anthropogenic causes. The ecosystem of the Kalpakkam coastal zone has been affected by nutrient contamination.
Assuntos
Sedimentos Geológicos , Poluentes Químicos da Água , Baías , Carbono/análise , Ecossistema , Monitoramento Ambiental/métodos , Sedimentos Geológicos/análise , Nitrogênio/análise , Fósforo/análise , Potássio/análise , Poluentes Químicos da Água/análise , Oceano ÍndicoRESUMO
One of the most significant and difficult jobs in food sustainability, is to make use of waste in the vegetable and fruit processing sectors. The discarded fruits along with their waste materials, is anticipated to have potential use for further industrial purposes via extraction of functional ingredients, extraction of bioactive components, fermentation. As a result of its abundant availability, simplicity and safe handling, and biodegradability, pineapple waste is now the subject of extensive research. It is regarded as a resource for economic development. This vast agro-industrial waste is being investigated as a low-cost raw material to produce a variety of high-value-added goods. Researchers have concentrated on the exploitation of pineapple waste, particularly for the extraction of prebiotic oligosaccharides as well as bromelain enzyme, and as a low-cost source of fibre, biogas, organic acids, phenolic antioxidants, and ethanol. Thus, this review emphasizes on pineapple waste valorisation approaches, extraction of bioactive and functional ingredients together with the advantages of pineapple waste to be used in many areas. From the socioeconomic perspective, pineapple waste can be a new raw material source to the industries and may potentially replace the current expensive and non-renewable sources. This review summarizes various approaches used for pineapple waste processing along with several important value-added products gained which could contribute towards healthy food and a sustainable environment.
Assuntos
Ananas , Antioxidantes , Biotecnologia , Frutas , ResíduosRESUMO
Oil spillage is one of the most common pollutants which brings greater economic loss and damage to the environment. The intensity and amount of the damage may vary depending on factors such as the type of oil, the location of the spill, and the climatic parameters in the area. As for any pollution management, the guidelines are Reduce, Re-use, Recover and Disposal. Amongst the other remediation processes, Bioremediation is amongst the most significant environmentally friendly and cost-effective approaches for marine biological restoration because it allows complex petroleum hydrocarbons in spilt oil to decompose completely into harmless compounds. Mainly, the necessity and essence of bioremediation were talked about. This review discussed the bacteria identified which are capable of degrading various oil related pollutants and their components. Also, it covered the various media components used for screening and growing the oil degrading bacteria and the pathways that are associated with oil degradation. This article also reviewed the recent research carried out related to the oil degrading bacteria.
Assuntos
Poluentes Ambientais , Poluição por Petróleo , Petróleo , Bactérias/metabolismo , Biodegradação Ambiental , Poluentes Ambientais/metabolismo , Hidrocarbonetos/metabolismo , Petróleo/metabolismoRESUMO
Recently, much research has been carried out to find a suitable catalyst for the transesterification process during biodiesel production where heterogeneous catalysts play a crucial role. As homogenous catalysts present drawbacks such as slow reaction rate, high-cost due to the use of food grade oils, problems associated with separation process, and environmental pollution, heterogenous catalysts are more preferred. Animal shells and bones are the biowastes suitably calcined for the synthesis of heterogenous base catalyst. The catalysts synthesized using organic wastes are environmentally friendly, and cost-effective. The present review is dedicated to synthesis of heterogeneous basic catalysts from the natural resources or biowastes in biodiesel production through transesterification of oils. Use of calcined catalysts for converting potential feedstocks (vegetable oils and animal fat) into biodiesel/FAME is effective and safe, and the yield could be improved over 98%. There is a vast scope for biowaste-derived catalysts in green production of biofuel.
Assuntos
Biocombustíveis , Óleos de Plantas , Animais , Catálise , EsterificaçãoRESUMO
Parmelia that belongs to the Parmeliaceae Family is a foliose lichen combined with one or two groups of fungi in Phylum Ascomycota or Basidiomycota and algae, which might be green algae or blue-green algae (cyanobacteria). It is generally called "Stone Flower," "Charila," "Pattharphool," or "Shilaaapushpa" in India. Lichen can be generally found growing on walls, old trees and spread largely across India, especially in the mountain area. It is a source of edible organisms for people residing in some regions of Nepal and it is also cultivated in hillsides of Kashmir. It has been found that lichen contains a lot of distinctive chemical compounds such as evernic acid, lecanoric acid, lobaric acid, norstictic acid, physodic acid, and salazinic acid. Some species of this lichen are recommended traditionally for controlling diseases such as boils, bronchitis, inflammations, excessive salivation, toothache, vomiting, etc. It has also applied as an indicator for biomonitoring, astringent, carminative, demulcent, bitter, resolvent, emollient, laxative, sporofic, sedative, diuretic and considered for treating sores, bronchitis, excessive salivation, vomiting, tooth-ache, boils and inflammations. It has been utilized for preparing traditional food and acts as a bioindicator for air pollution and radiation. It shows antibacterial, antioxidant, antimycobacterial and antifungal activities, including haemolytic, anaesthetic, spasmolytic and antispasmodic and antitumour activities. It also has several unique phytoconstituents that could be in charge of different therapeutic activities, but the majority of them are still unexplored. The review mainly focuses on various facets, such as common names, synonyms, traditional uses, botanical descriptions, and pharmacological activities of seven species of Parmelia.
Assuntos
Hidroxibenzoatos/farmacologia , Lactonas/farmacologia , Parmeliaceae/crescimento & desenvolvimento , Salicilatos/farmacologia , Depsídeos/isolamento & purificação , Depsídeos/farmacologia , Humanos , Hidroxibenzoatos/isolamento & purificação , Lactonas/isolamento & purificação , Medicina Tradicional , Parmeliaceae/química , Parmeliaceae/classificação , Salicilatos/isolamento & purificaçãoRESUMO
The generation of energy through anaerobic digestion using animal manures is being promoted as an environmentally sustainable method of managing animal wastes. However, sustainability of biogas production is reliant on the sustainable utilization of the digestates that emanate from the process. Our study evaluated the effects of the biogas digestates on crop phytotoxicity and their fertilizer potential as a nutrient solution in hydroponic tomato production. Biogas digestates diluted up to 40% (v/v) resulted in significantly (P < 0.05) the lowest relative seed germination (RSG) in all vegetables evaluated in our study. The highest RSG was observed in the 10% biogas digestates, which was higher than the control treatment. For the crop growth study, relative to the control,the treatments with 20%, 40% and 60% mineral fertilizer substitution resulted in 39.4%; 22.8% and 8.7% significantly (P < 0.05) lower chlorophyll content, respectively. On average, the treatments with biogas slurry, though substituted with mineral fertilizers, resulted in a 275% lower fresh fruit yield compared to the control treatment. However, with biogas digestates, the sugar content in the tomato fruits significantly increased, whilst the heavy metal content was below that recommended limit when irrigation water is used. The results of our study demonstrated that cow based digestates are not a suitable nutrient media for hydroponic tomato production. Moreover, even with mineral fertilizer supplementation, only the control treatment containing only mineral hydroponic fertilizer resulted in positive growth and yield in tomatoes.
RESUMO
Eco-friendly biosynthesis of nanoparticles from medicinal plants as reducing agent has gained importance due to its potential therapeutic uses. In the present study Silver nanoparticles (AgNPs) were eco-friendly synthesized using the leaf extracts of the medicinal plant Tropaeolum majus. The obtained AgNPs were characterized by UV - visible spectrum, FTIR, SEM and XRD which clearly showed the reduction of Ag+ ions to Ag0. In addition, the aqueous and ethanolic extracts were analyzed for phytochemicals and its antioxidant activities. GC-MS spectrum showed the presence of 25 compounds with benzeneacetic acid as the dominant contents. The synthesized AgNPs revealed maximum absorption spectrum at 463â¯nm and FTIR vibrational peaks at 3357.46, 21,966.52, 2118.42, 1637.27, 658.571 and 411.728â¯cm-1 respectively. SEM and XRD studies evidenced the nature of nanocrystalline with face centered cubic (fcc) crystal structure. Both AgNPs and plant extracts showed more inhibition activity against Pseudomonas aeroginosa compared to other bacteria with MIC value of 6.25⯵g/ml. Antifungal activities was higher for Penicilium notatum with MIC value 31.2⯵g/ml. The IC50 values for MCF7 for aqueous extract were found to be 4.68⯵g/ml, ethanol extract 7.5⯵g/ml, AgNPs 2.49⯵g/ml, and doxorubicin 1.4⯵g/ml. The IC50 values for VERO cell line for aqueous extract was 8.1⯵g/ml, ethanol extract with 6.8⯵g/ml, silver nanoparticles 5.3⯵g/ml and doxorubicin 2.6⯵g/ml respectively. Conclusively, the antibacterial, antifungal, antioxidant and anticancer properties of the synthesized AgNPs from Tropaeolum majus act as major therapeutic drug for microbial infectious disease and other health associated disorders.
Assuntos
Nanopartículas Metálicas/química , Extratos Vegetais/química , Tropaeolum/química , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Antifúngicos/química , Antifúngicos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Chlorocebus aethiops , Química Verde , Humanos , Células MCF-7 , Extratos Vegetais/farmacologia , Folhas de Planta/química , Prata/química , Células VeroRESUMO
The interactions between earthworms and microorganisms activity has prompted several researchers to evaluate the potential of artificially inoculating vermicomposts with additional specific microbes, with the intention of enhancing the vermicomposting process. This study evaluated the potential of inoculating fly ash (F)-cow dung-paper waste (CP) mixture (F-CP) with a specialized microbial cocktail called Effective micro-organisms (EM) during vermicomposting using Eisenia fetida earthworms. Inoculation with EM alone did not result in significantly (P>0.05) different changes in C/N ratio and dissolved organic matter (DOC) compared to the control with no EM and E. fetida. A significant interaction between EM and E. fetida presence resulted in greater changes in C/N ratio and DOC, which were not statistically different from the E. fetida alone treatment. It was also noteworthy that the activity of ß-Glucosidase was not influenced by the presence of EM, but was significantly influenced (P=0.0014) by the presence of E. fetida. However, the EM+E. fetida treatment resulted in a rate of weekly Olsen P release of 54.32mgkg(-1) which was 12.3%, 89.2% and 228.0% more that the E. fetida alone, EM alone and control treatments, respectively. Similarly, though higher in the E. fetida plus EM treatment, the phosphate solubilizing bacteria counts were not significantly different (P>0.05) from the E. fetida alone treatment. It is concluded that inoculation of F-CP composts with EM alone may not be beneficial, while combining EM with E. fetida results in faster compost maturity and significantly greater Olsen P release. It would be interesting to evaluate higher optimized rates of EM inoculation and fortifying EM cocktails with phosphate solubilizing bacteria (PSB) on F-CP vermicompost degradation and phosphorus mineralization.
Assuntos
Cinza de Carvão , Oligoquetos , Papel , Solo , Gerenciamento de Resíduos/métodos , Animais , Biodegradação Ambiental , Carbono/análise , Bovinos , Enzimas/metabolismo , Esterco , Nitrogênio/análise , Fósforo/metabolismo , Solo/química , Microbiologia do SoloRESUMO
Role of Acidithiobacillus ferrooxidans culture in bioacidification and dewaterability of anaerobically digested sewage sludge (ADS) was investigated. A. ferrooxidans culture grown in 9K medium along with Fe(2+) produced iron flocculant containing, secondary iron minerals and biopolymeric substances as confirmed by FT-IR, XRD, and SEM-EDX. Bioacidification of ADS was performed using 10% (v/v) A. ferrooxidans culture, isolated cells and cell-free culture filtrate; and dewaterability was assessed using the capillary suction time (CST) and specific resistance to filtration (SRF). Isolated bacterial cells significantly (P<0.05) reduced the sludge dewaterability when supplemented with Fe(2+) while the whole culture and cell-free filtrate rapidly acidified the sludge without Fe(2+) and showed significant reduction of CST (71.3-73.5%) and SRF (84-88%). Results clearly indicated that the culture and filtrate of the A. ferrooxidans facilitated rapid sludge dewaterability while the cells supplemented with Fe(2+) also enhanced dewaterability but required 2-4 days.