Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Biochem Genet ; 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38017284

RESUMO

MicroRNAs could be promising biomarkers for various diseases, and small RNA drugs have already been FDA approved for clinical use. This area of research is rapidly expanding and has significant potential for the future. Fennel (Anethum foeniculum) is a highly esteemed spice plant with economic and medicinal benefits, making it an invaluable asset in the pharmaceutical industry. To characterize the fennel miRNAs and their Arabidopsis thaliana and Homo sapience targets with functional enrichment analysis and human disease association. A homology-based computational approach characterized the MiRnome of the Anethum foeniculum genome and assessed its impact on Arabidopsis thaliana and Homo sapience transcriptomes. In addition, functional enrichment analysis was evaluated for both species' targets. Moreover, PPI network analysis, hub gene identification, and MD simulation analysis of the top hub node with fennel miRNA were incorporated. We have identified 100 miRNAs of fennel and their target genes, which include 2536 genes in Homo sapiens and 1314 genes in Arabidopsis thaliana. Functional enrichment analysis reveals 56 Arabidopsis thaliana targets of fennel miRNAs showed involvement in metabolic pathways. Highly enriched human KEGG pathways were associated with several diseases, especially cancer. The protein-protein interaction network of human targets determined the top ten nodes; from them, seven hub nodes, namely MAPK1, PIK3R1, STAT3, EGFR, KRAS, CDC42, and SMAD4, have shown their involvement in the pancreatic cancer pathway. Based on the Blast algorithm, 21 fennel miRNAs are homologs to 16 human miRNAs were predicted; from them, the CSPP1 target was a common target for afo-miR11117a-3p and has-miR-6880-5p homologs miRNAs. Our results are the first to report the 100 fennel miRNAs, and predictions for their endogenous and human target genes provide a basis for further understanding of Anethum foeniculum miRNAs and the biological processes and diseases with which they are associated.

2.
Funct Integr Genomics ; 23(2): 149, 2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37148427

RESUMO

Holarrhena pubescens is an effective medicinal plant from the Apocynaceae family, widely distributed over the Indian subcontinent and extensively used by Ayurveda and ethno-medicine systems without apparent side effects. We postulated that miRNAs, endogenous non-coding small RNAs that regulate gene expression at the post-transcriptional level, may, after ingestion into the human body, contribute to the medicinal properties of plants of this species by inducing regulated human gene expression to modulate. However, knowledge is scarce about miRNA in Holarrhena. In addition, to test the hypothesis on the potential pharmacological properties of miRNA, we performed a high-throughput sequencing analysis using the Next Generation Sequencing Illumina platform; 42,755,236 raw reads have been generated from H. pubescens stems from a library of small RNA isolated, identifying 687 known and 50 new miRNAs led. The novel H. pubescens miRNAs were predicted to regulate specific human genes, and subsequent annotations of gene functions suggested a possible role in various biological processes and signaling pathways, such as Wnt, MAPK, PI3K-Akt, and AMPK signaling pathways and endocytosis. The association of these putative targets with many diseases, including cancer, congenital malformations, nervous system disorders, and cystic fibrosis, has been demonstrated. The top hub proteins STAT3, MDM2, GSK3B, NANOG, IGF1, PRKCA, SNAP25, SRSF1, HTT, and SNCA show their interaction with human diseases, including cancer and cystic fibrosis. To our knowledge, this is the first report of uncovering H. pubescens miRNAs based on high-throughput sequencing and bioinformatics analysis. This study has provided new insight into a potential cross-species control of human gene expression. The potential for miRNA transfer should be evaluated as one possible mechanism of action to account for the beneficial properties of this valuable species.


Assuntos
Fibrose Cística , Holarrhena , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Holarrhena/metabolismo , Fosfatidilinositol 3-Quinases/genética , Análise de Sequência de RNA , Sequenciamento de Nucleotídeos em Larga Escala , RNA de Plantas/genética , RNA de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Fatores de Processamento de Serina-Arginina/genética , Fatores de Processamento de Serina-Arginina/metabolismo
3.
Funct Integr Genomics ; 23(1): 55, 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36725761

RESUMO

Cross-species post-transcriptional regulatory potential of plant derived small non-coding microRNAs (miRNAs) has been well documented by plenteous studies. MicroRNAs are transferred to host cells via oral ingestion wherein they play a decisive role in regulation of host genes; thus, miRNAs have evolved as the nascent bioactive molecules imparting pharmacological values to traditionally used medicinal plants. The present study aims to investigate small RNA profiling in order to uncover the potential regulatory role of miRNAs derived from Andrographis paniculata, one of the most widely used herb by tribal communities for liver disorders and document the pharmacological properties of A. paniculata miRNAs. In this study, high-throughput sequencing method was used to generate raw data, ~ 60 million sequences were generated from A. paniculata leaves. Using computational tools and bioinformatics approach, analyses of 3,480,097 clean reads resulted in identification of 3440 known and 51 putative novel miRNAs regulating 1365 and 192 human genes respectively. Remarkably, the identified plausible novel miRNAs apa-miR-5, apa-miR-1, apa-miR-26, and apa-miR-30 are projected to target significant host genes including CDK6, IKBKB, TRAF3, CHD4, MECP2, and ADIPOQ. Subsequent annotations revealed probable involvement of the target genes in various pathways for instance p38-MAPK, AKT, AMPK, NF-Kß, ERK, WNT signalling, MYD88 dependant cascade, and pathways in cancer. Various diseases such as human papilloma virus infection, Alzheimer's, Non-alcoholic Fatty Liver, Alcoholic liver diseases, HepatoCellular Carcinoma (HCC), and numerous other cancers were predominantly found to be linked with target genes. Our findings postulate novel interpretations regarding modulation of human transcripts by A. paniculata miRNAs and exhibit the regulation of human diseases by plant-derived miRNAs. Though our study elucidates miRNAs as novel therapeutic agents, however, experimental validations for assessment of therapeutic potential of these miRNAs are still warranted.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Humanos , MicroRNAs/genética , Andrographis paniculata , Análise de Sequência de RNA , Sequenciamento de Nucleotídeos em Larga Escala , Perfilação da Expressão Gênica
4.
J Biomol Struct Dyn ; 41(6): 2382-2397, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35098887

RESUMO

Coronaviruses (CoVs) belong to a group of RNA viruses that cause diseases in vertebrates including. Newer and deadlier than SARS CoV-2 are sought to appear in future for which the scientific community must be prepared with the strategies for their control. Spike protein (S-protein) of all the CoVs require angiotensin-converting enzyme2 (ACE2), while CoVs also require hemagglutinin-acetylesterase (HE) glycoprotein receptor to simultaneously interact with O-acetylated sialic acids on host cells, both these interactions enable viral particle to enter host cell leading to its infection. Target inhibition of viral S-protein and HE glycoprotein receptor can lead to a development of therapy against the SARS CoV-2. The proposition is to recognize molecules from the bundle of phytochemicals of medicinal plants known to possess antiviral potentials as a lead that could interact and mask the active site of, HE glycoprotein which would ideally bind to O-acetylated sialic acids on human host cells. Such molecules can be addressed as 'HE glycoprotein blockers'. A library of 110 phytochemicals from Withania somnifera, Asparagus racemosus, Zinziber officinalis, Allium sativum, Curcuma longa and Adhatoda vasica was constructed and was used under present study. In silico analysis was employed with plant-derived phytochemicals. The molecular docking, molecular dynamics simulations over the scale of 1000 ns (1 µs) and ADMET prediction revealed that the Withania somnifera (ashwagandha) and Asparagus racemosus (shatavari) plants possessed various steroidal saponins and alkaloids which could potentially inhibit the COVID-19 virus and even other CoVs targeted HE glycoprotein receptor.Communicated by Ramaswamy H. Sarma.


Assuntos
COVID-19 , Animais , Humanos , Hemaglutininas , Simulação de Acoplamento Molecular , Receptores Virais/química , Antivirais/farmacologia , Fluxo de Trabalho , Glicoproteína da Espícula de Coronavírus/química , SARS-CoV-2/metabolismo , Ácidos Siálicos/metabolismo , Simulação de Dinâmica Molecular , Esterases , Compostos Fitoquímicos/farmacologia
5.
Microrna ; 11(1): 45-56, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35307000

RESUMO

BACKGROUND: Since ancient times, "betel leaf" (Piper betle) has been revered for its religious, cultural, and medicinal properties. Phytochemicals from the Piper betle are effective in a variety of conditions, including cancer. To date, however, no genomic study or evidence has been found to elucidate the regulatory mechanism that underpins its therapeutic properties. This is the first study of its kind to predict Piper betle miRNAs and also the first genomics source representation of Piper betle. According to previous research, miRNAs from the plants we eat can regulate gene expression. In line with this, our in-silico study revealed that Piper betle and human cross-kingdom control occurs. METHODS: This study demonstrates the prediction and in-silico validation of Piper betle miRNAs from NGS-derived transcript sequences. The cross-kingdom regulation, which can also be understood as inter- species RNA regulation, was studied to identify human mRNA targets controlled by Piper betle miRNAs. Functional annotation and gene-disease association of human targets were performed to understand the role of Piper betle miRNAs in human health and disease. The protein-protein interaction and expression study of targets was further carried out to decipher their role in cancer development. RESULTS: Identified six Piper betle miRNAs belonging to miR156, miR164, miR172, and miR535 families were discovered to target 198 human mRNAs involved in various metabolic and disease processes. Angiogenesis and the cell surface signaling pathway were the most enriched gene ontology correlated with targets, both of which play a critical role in disease mechanisms, especially in the case of carcinoma. In an analysis of gene-disease interactions, 40 genes were found to be related to cancer. According to a protein-protein interaction, the CDK6 gene, which is thought to be a central regulator of cell cycle progression, was found as a hub protein, affecting the roles of CBFB, SAMD9, MDM4, AXIN2, and NOTCH2 oncogenes. Further investigation revealed that pbe-miRNA164a can be used as a regulator to minimise disease severity in Acute Myeloid Leukemia, where CDK6 expression is highest compared to normal cells. CONCLUSION: The predicted pbe-miRNA164a in this study can be a promising suppressor of CDK6 gene involved in tumour angiogenesis. In vivo validation of the pbe-miRNA164a mimic could pave the way for new opportunities to fight cancer and leverage the potential of Piper betle in the healthcare sector.


Assuntos
MicroRNAs , Piper betle , Proteínas de Ciclo Celular , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , MicroRNAs/genética , Piper betle/química , Extratos Vegetais/química , Folhas de Planta/química , Proteínas Proto-Oncogênicas/análise
6.
Nutr Cancer ; 74(7): 2522-2539, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34751606

RESUMO

Moringa oleifera is a medicinally important plant that has various medical and nutritional uses. Plant miRNAs are a class of non-coding endogenous small RNAs that regulate human-specific mRNA but the mechanistic actions are largely unknown. Here, in this study, we aim to explore the mechanistic action and influence of M. oleifera seed miRNAs on vital human target genes using computer based approaches. The M. oleifera seed miRNAs sequence was taken from published data and identified its human gene targets using a psRNA target analysis server. We identified 94 miRNAs that are able to significantly regulate 47 human target genes, which has enormous biological and functional importance. Out of 47 human targeted genes, 23 genes were found to be associated with PI3K-AKT, RUNX, and MAPK1/MAPK3 signaling pathway which has shown to play key roles in bone metastases during cancer progression. The M. oleifera seed miRNAs hold a strong potential for future research that might uncover the possibility of miRNA-facilitated cross-kingdom regulation and therapeutic targets for bone metastases.


Assuntos
Neoplasias Ósseas , MicroRNAs , Moringa oleifera , Extratos Vegetais , Sementes , Neoplasias Ósseas/prevenção & controle , Neoplasias Ósseas/secundário , Humanos , MicroRNAs/genética , Moringa oleifera/química , Extratos Vegetais/farmacologia , Sementes/química , Transdução de Sinais
7.
Nutr Cancer ; 74(3): 1023-1036, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34170200

RESUMO

Moringa oleifera possesses numerous advantageous effects like anti-microbial, antioxidant, and anti-inflammatory, leaves contain a high multiplicity of the bioactive compound; however, little is identified about its bioaccessibility. The objective of this study was to assess the bioefficacy, bioaccessible and anticancer activity of Moringa oleifera in a PC3 cell line before and after simulated in vitro digestion. Digested and non-digested extracts were prepared and evaluated for total polyphenols, flavonoids, and total antioxidant capacity by spectrophotometric analysis and LCMS analysis. Cell viability, apoptosis, colony formation, cell cycle, Glutathione level, and gene expression study were tested with Moringa oleifera (MO) and digested Moringa oleifera (DMO). Results revealed that total polyphenols, total flavonoids, and TAC were significantly (P < 0.05) reduced after in vitro digestion. Furthermore, biological activity against the PC3 cell line showed that DMO extracts significant cytotoxic and reduced cell vitality compared to the MO. In addition, DMO extract had a noteworthy effect in apoptosis and inhibiting the colony formation ability; while cell cycle was blocked in S phase by both extracts but significant effect showed in DMO. These studies have increased understanding of the influence of in vitro simulation digestion on the biological activity effect of M. oleifera against prostate cancer bone metastasis.Supplemental data for this article is available online at https://doi.org/10.1080/01635581.2021.1933099 .


Assuntos
Moringa oleifera , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Digestão , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Folhas de Planta , Polifenóis/metabolismo , Polifenóis/farmacologia
8.
Sci Rep ; 11(1): 20295, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34645849

RESUMO

Novel SARS-CoV-2, an etiological factor of Coronavirus disease 2019 (COVID-19), poses a great challenge to the public health care system. Among other druggable targets of SARS-Cov-2, the main protease (Mpro) is regarded as a prominent enzyme target for drug developments owing to its crucial role in virus replication and transcription. We pursued a computational investigation to identify Mpro inhibitors from a compiled library of natural compounds with proven antiviral activities using a hierarchical workflow of molecular docking, ADMET assessment, dynamic simulations and binding free-energy calculations. Five natural compounds, Withanosides V and VI, Racemosides A and B, and Shatavarin IX, obtained better binding affinity and attained stable interactions with Mpro key pocket residues. These intermolecular key interactions were also retained profoundly in the simulation trajectory of 100 ns time scale indicating tight receptor binding. Free energy calculations prioritized Withanosides V and VI as the top candidates that can act as effective SARS-CoV-2 Mpro inhibitors.


Assuntos
Tratamento Farmacológico da COVID-19 , Proteases 3C de Coronavírus/metabolismo , Compostos Fitoquímicos/farmacologia , Antivirais/farmacologia , Biologia Computacional/métodos , Proteases 3C de Coronavírus/efeitos dos fármacos , Proteases 3C de Coronavírus/ultraestrutura , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Simulação de Acoplamento Molecular/métodos , Simulação de Dinâmica Molecular , Peptídeo Hidrolases/efeitos dos fármacos , Compostos Fitoquímicos/metabolismo , Inibidores de Proteases/farmacologia , Ligação Proteica/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/patogenicidade
9.
Comput Biol Med ; 136: 104662, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34311261

RESUMO

The coronavirus disease of 2019 (COVID-19) began as an outbreak and has taken a toll on human lives. The current pandemic requires scientific attention; hence we designed a systematic computational workflow to identify the cellular microRNAs (miRNAs) from human host possessing the capability to target and silence 3'UTR of SARS-CoV-2 genome. Based on this viewpoint, we extended our miRNA search to medicinal plants like Ocimum tenuiflorum, Zingiber officinale and Piper nigrum, which are well-known to possess antiviral properties, and are often consumed raw or as herbal decoctions. Such an approach, that makes use of miRNA of one species to interact and silence genes of another species including viruses is broadly categorized as cross-kingdom interactions. As a part of our genomics study on host-virus-plant interaction, we identified one unique 3'UTR conserved site 'GGAAGAG' amongst 5024 globally submitted SARS-CoV-2 complete genomes, which can be targeted by the human miRNA 'hsa-miR-1236-3p' and by Z. officinale miRNA 'zof-miR2673b'. Additionally, we also predicted that the members of miR477 family commonly found in these three plant genomes possess an inherent potential to silence viral genome RNA and facilitate antiviral defense against SARS-CoV-2 infection. In conclusion, this study reveals a universal site in the SARS-CoV-2 genome that may be crucial for targeted therapeutics to cure COVID-19.


Assuntos
COVID-19 , MicroRNAs , Plantas Medicinais , Regiões 3' não Traduzidas/genética , Biologia Computacional , Genômica , Humanos , MicroRNAs/genética , Plantas Medicinais/genética , RNA de Plantas , SARS-CoV-2
10.
Toxicol Appl Pharmacol ; 423: 115576, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34000264

RESUMO

Metastatic breast cancer is a prevalent life-threatening disease. Paclitaxel (PTX) is widely used in metastatic breast cancer therapy, but the side effects limit its chemotherapeutic application. Multidrug strategies have recently been used to maximize potency and decrease the toxicity of a particular drug by reducing its dosage. Therefore, we have evaluated the combined anti-cancerous effect of PTX with tested natural compounds (andrographolide (AND), silibinin (SIL), mimosine (MIM) and trans-anethole (TA)) using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, trypan blue dye exclusion assay, proliferating cell nuclear antigen (PCNA) staining, network pharmacology, molecular docking, molecular dynamics (MD) and in vivo chick chorioallantoic membrane (CAM) angiogenesis assay. We observed a reduction in the IC50 value of PTX with tested natural compounds. Further, the network pharmacology-based analysis of compound-disease-target (C-D-T) network showed that PTX, AND, SIL, MIM and TA targeted 55, 61, 56, 31 and 18 proteins of metastatic breast cancer, respectively. Molecular docking results indicated that AND and SIL inhibited the C-D-T network's core target kinase insert domain receptor (KDR) protein more effectively than others. While MD showed that the binding of AND with KDR was stronger and more stable than others. In trypan blue dye exclusion assay and PCNA staining, AND and SIL along with PTX were found to be more effective than PTX alone. CAM assay results suggested that AND, SIL and TA increase the anti-angiogenic potential of PTX. Thus, natural compounds can be used to improve the anti-cancer potential of PTX.


Assuntos
Antineoplásicos Fitogênicos/metabolismo , Produtos Biológicos/metabolismo , Neoplasias da Mama/metabolismo , Paclitaxel/metabolismo , Animais , Antineoplásicos Fitogênicos/administração & dosagem , Produtos Biológicos/administração & dosagem , Produtos Biológicos/química , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Embrião de Galinha , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Humanos , Simulação de Acoplamento Molecular/métodos , Paclitaxel/administração & dosagem , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Resultado do Tratamento
11.
Mol Divers ; 25(1): 421-433, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32996011

RESUMO

The pandemic outbreak of the Corona viral infection has become a critical global health issue. Biophysical and structural evidence shows that spike protein possesses a high binding affinity towards host angiotensin-converting enzyme 2 and viral hemagglutinin-acetylesterase (HE) glycoprotein receptor. We selected HE as a target in this study to identify potential inhibitors using a combination of various computational approaches such as molecular docking, ADMET analysis, dynamics simulations and binding free energy calculations. Virtual screening of NPACT compounds identified 3,4,5-Trihydroxy-1,8-bis[(2R,3R)-3,5,7-trihydroxy-3,4-dihydro-2H-chromen-2-yl]benzo[7]annulen-6-one, Silymarin, Withanolide D, Spirosolane and Oridonin as potential HE inhibitors with better binding energy. Furthermore, molecular dynamics simulations for 100 ns time scale revealed that most of the key HE contacts were retained throughout the simulations trajectories. Binding free energy calculations using MM/PBSA approach ranked the top-five potential NPACT compounds which can act as effective HE inhibitors.


Assuntos
Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Hemaglutininas Virais/metabolismo , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/metabolismo , Proteínas Virais de Fusão/metabolismo , COVID-19/virologia , Humanos , Simulação de Acoplamento Molecular/métodos , Simulação de Dinâmica Molecular , Pandemias/prevenção & controle , Ligação Proteica
12.
Plant Signal Behav ; 15(1): 1699265, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31797719

RESUMO

Bacopa monnieri known as 'Brahmi' is a well-known medicinal plant belonging to Scrophulariaceae family for its nootropic properties. To the best of our knowledge, no characterization data is available on the potential role of micro RNAs (miRNAs) from this plant till date. We present here the first report of computational characterizations of miRNAs from B. monnieri. Owing to the high conservation of miRNAs in nature, new and potential miRNAs can be identified in plants using in silico techniques. Using the plant miRNA sequences present in the miRBase repository, a total of 12 miRNAs were identified from B. monnieri which pertained to 11 miRNA families from the shoot and root transcriptome data. Furthermore, gene ontology analysis of the identified 68 human target genes exhibited significance in various biological processes. These human target genes were associated with signaling pathways like NF-kB and MAPK with TRAF2, CBX1, IL1B, ITGA4 and ITGB1BP1 as the top five hub nodes. This cross-kingdom study provides initial insights about the potential of miRNA-mediated cross-kingdom regulation and unravels the essential target genes of human with implications in numerous human diseases including cancer.


Assuntos
Bacopa/genética , Bacopa/metabolismo , MicroRNAs/metabolismo , Transcriptoma/genética , Homólogo 5 da Proteína Cromobox , Ontologia Genética , Humanos , MicroRNAs/genética
13.
Int. j. high dilution res ; 19(4): 2-9, 2020.
Artigo em Inglês | LILACS, HomeoIndex | ID: biblio-1146533

RESUMO

IntroductionNosodes, the homeopathicpreparationssourcedfrom biological materials including clinical samples, cultures of organisms, and diseased tissues have been in use against the source-specific infections as well as other diseases. The nosodes have demonstrated some efficacy in managing epidemics, such as influenza, dengue, and leptospirosis.This article presents the need and process of development ofnosodes from the SARS-CoV-2 to explore its prophylactic and therapeutic potentials against certain related viral diseases.Materials and methodsA clinical sample of SARS-Cov-2 positive patient,based on the cycle threshold (CT) value of the qRT-PCR, heat-inactivated SARS-CoV-2, and spike glycoprotein all were processed for making nosodesas per the method described in Homoeopathy Pharmacopoeia of India.Molecular tests, such as qRT-PCR and sterility tests were performed to establish the live organisms, RNA material, and the absence of contamination.ResultsThree variants of CoronavirusNosodewere developed using a clinical sample,heat-inactivatedSARS-CoV-2, and spike glycoprotein.In potencies 3c and above, no detectableSARS-CoV-2 RNA material was found by PCR.The analytical results for nosodes were reported as compliant for sterility testing as per the IP.ConclusionThree variants of Coronavirus nosodes were preparedwhich need to be evaluated further through pre-clinical and clinical studies.(AU)


Assuntos
Humanos , /farmacologia , Infecções por Coronavirus/terapia , Composição de Medicamentos , Glicoproteína da Espícula de Coronavírus , Betacoronavirus , Inativação de Vírus , Betacoronavirus/efeitos dos fármacos
14.
Mol Biol Rep ; 46(3): 2979-2995, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31066002

RESUMO

MicroRNAs (miRNAs) are conserved small non coding RNAs, which are typically 22-24 nucleotides long and play an important role in post transcription regulation andin various biological processes in both animals and plants. Ocimum basilicum is an important medicinal plant having different bioactive compounds eugenol and essential oils that possess numerous therapeutic properties. However, only a few miRNAs of Ocimum basilicum and its function have been studied till date. The present study focusses on the identification of miRNA from expressed sequenced tags by carrying out computational approaches based on the homology search method. A total of 10 potential miRNAs with 8 different families were predicted in O.basilicum. Furthermore, the psRNA target server was used to predict cross kingdom target genes on human transcriptome for identification ofpotential miRNAs. Eight miRNA families were found to modulate the 87 human target genes which were associated with RAS/MAPK signalling cascade, cardiomyopathy, HIV, breast cancer, lung cancer, Alzheimer's diseases and several neurological disorders. Moreover, O.basilicum miRNAs regulate the key human target genes having significance in various diseases and important biological networks with 10 hub nodes interactions. Thus this study gives the pave for further studies to explore the potential of miRNA mediated cross kingdom regulation and treatment of various diseases including cancer.


Assuntos
Biologia Computacional/métodos , Ocimum basilicum/genética , Animais , Sequência de Bases , Sequência Conservada , Etiquetas de Sequências Expressas , Regulação da Expressão Gênica de Plantas/genética , Humanos , MicroRNAs/genética , Anotação de Sequência Molecular , Ocimum basilicum/metabolismo , Filogenia , RNA de Plantas/genética , Transcriptoma
15.
Genomics ; 111(4): 772-785, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-29775783

RESUMO

O. basilicum is medicinally important herb having inevitable role in human health. However, the mechanism of action is largely unknown. Present study aims to understand the mechanism of regulation of key human target genes that could plausibly modulated by O. basilicum miRNAs in cross kingdom manner using computational and system biology approach. O. basilicum miRNA sequences were retrieved and their corresponding human target genes were identified using psRNA target and interaction analysis of hub nodes. Six O. basilicum derived miRNAs were found to modulate 26 human target genes which were associated `with PI3K-AKTand MAPK signaling pathways with PTPN11, EIF2S2, NOS1, IRS1 and USO1 as top 5 Hub nodes. O. basilicum miRNAs not only regulate key human target genes having a significance in various diseases but also paves the path for future studies that might explore potential of miRNA mediated cross-kingdom regulation, prevention and treatment of various human diseases including cancer.


Assuntos
Redes Reguladoras de Genes , Genoma Humano , MicroRNAs/genética , Ocimum basilicum/genética , Plantas Medicinais/genética , RNA de Plantas/genética , Proteínas da Matriz do Complexo de Golgi/genética , Proteínas da Matriz do Complexo de Golgi/metabolismo , Humanos , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Sistema de Sinalização das MAP Quinases , MicroRNAs/metabolismo , Óxido Nítrico Sintase Tipo I/genética , Óxido Nítrico Sintase Tipo I/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , RNA de Plantas/metabolismo , Biologia de Sistemas , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
16.
Indian J Dent Res ; 25(5): 580-5, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25511055

RESUMO

BACKGROUND: Heat shock proteins-47 (HSP47) is a collagen specific molecular chaperone, involved in the processing and/or secretion of procollagen. It seems to be regularly upregulated in various fibrotic or collagen disorders. Hence, this protein can be a potential target for the treatment of various fibrotic diseases including oral submucous fibrosis (OSF), which is a collagen metabolic disorder of oral cavity and whose etiopathogeneic mechanism and therapeutic protocols are still not well documented. AIM: The aim of this study is to identify the novel therapeutic agents using in-silico methods for the management of OSF. OBJECTIVES: The objectives of this study are to identify the binding sites of HSP47 on the collagen molecule and to identify the lead compound with anti-HSP47 activity from the library of natural compounds, using in-silico methodology. MATERIALS AND METHODS: The web-based and tool based in-silico analysis of the HSP47 and collagen molecules are used in this study. The crystal structure of collagen and HSP47 were retrieved from Protein Data Bank website. The binding site identification and the docking studies are done using Molegro Virtual Docker offline tool. RESULTS: Out of the 104 Natural compounds, six ligands are found to possess best binding affinity to the binding amino acid residues. Silymarin binds with the 4AU2A receptor and the energy value are found to be -178.193 with four Hbonds. The other best five natural compounds are hesperidin, ginkgolides, withanolides, resveratrol, and gingerol. Our findings provide the basis for the in-vitro validation of the above specified compounds, which can possibly act as "lead" molecules in designing the drugs for OSF. CONCLUSION: HSP47 can be a potential candidate to target, in order to control the production of abundance collagen in OSF. Hence, the binding sites of HSP47 with collagen are identified and some natural compounds with a potential to bind with these binding receptors are also recognized. These natural compounds might act as anti-HSP47 lead molecules in designing novel therapeutic agents for OSF, which are so far unavailable.


Assuntos
Simulação por Computador , Proteínas de Choque Térmico HSP47/química , Modelos Químicos , Fibrose Oral Submucosa/tratamento farmacológico , Marcadores de Afinidade/química , Antioxidantes/química , Sítios de Ligação , Catecóis/química , Colágeno/química , Cristalografia , Álcoois Graxos/química , Zingiber officinale/química , Ginkgolídeos/química , Hesperidina/química , Humanos , Ligantes , Ligação Proteica , Resveratrol , Ribonucleotídeo Redutases/antagonistas & inibidores , Silimarina/química , Estilbenos/química , Interface Usuário-Computador , Vitanolídeos/química
17.
Integr Cancer Ther ; 6(4): 365-72, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18048884

RESUMO

Tobacco is the major etiological factor for oral cancer development through the generation of oxidative stress. Therefore, markers of oxidative stress such as total antioxidant status, lipid peroxidation, and total thiol levels might be useful to monitor oxidative stress and predict overall survival in oral cancer patients. The study included 140 oral cancer patients and 50 healthy controls, who were classified as with the habit of tobacco and no habit of tobacco. Adjacent normal and malignant tissue samples were collected from oral cancer patients. Plasma and tissue levels of lipid peroxidation, thiol, and total antioxidant status were assayed by spectrophotometric methods. Thiol levels were significantly lower in controls with the habit of tobacco (P= .033), oral cancer patients (P= .0001), and malignant tissues (P= .015) as compared to controls with no habit of tobacco, controls with the habit of tobacco, and adjacent normal tissues, respectively. Tobacco exposure was higher in oral cancer patients than controls with the habit of tobacco. Controls with the habit of tobacco who had lower thiol (odds ratio [OR]=10.58, P= .008) and high tobacco exposure (OR=0.251, P= .05) showed an elevated risk of oral cancer development. Patients showing a lipid peroxidation level above the cutoff level as compared to patients below the cutoff level showed poor overall survival, whereas those with thiol and total antioxidant status levels below the cutoff level as compared to their respective counterparts showed poor overall survival. In conclusion, lipid peroxidation and thiol could be useful for predicting the risk of oral carcinogenesis in healthy tobacco consumers and predicting overall survival of oral cancer patients.


Assuntos
Antioxidantes/metabolismo , Carcinoma de Células Escamosas/diagnóstico , Peróxidos Lipídicos/sangue , Neoplasias Bucais/diagnóstico , Compostos de Sulfidrila/sangue , Adulto , Idoso , Carcinoma de Células Escamosas/sangue , Feminino , Humanos , Índia , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Neoplasias Bucais/sangue , Análise Multivariada , Razão de Chances , Lesões Pré-Cancerosas/sangue , Lesões Pré-Cancerosas/diagnóstico , Lesões Pré-Cancerosas/etiologia , Prognóstico , Fatores de Risco , Fumar/efeitos adversos , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Tabaco sem Fumaça/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA