Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Neurorehabil Neural Repair ; 37(8): 564-576, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37272448

RESUMO

BACKGROUND: Transauricular vagus nerve stimulation (taVNS) is being studied as a feasible intervention for stroke, but the mechanisms by which this non-invasive technique acts in the cortex are still broadly unknown. OBJECTIVES: This study aimed to systematically review the current pre-clinical evidence in the auricular vagus nerve stimulation (aVNS) neuroplastic effects in stroke. METHODS: We searched, in December of 2022, in Medline, Cochrane, Embase, and Lilacs databases. The authors executed the extraction of the data on Excel. The risk of bias was evaluated by adapted Cochrane Collaboration's tool for animal studies (SYRCLES's RoB tool). RESULTS: A total of 8 studies published between 2015 and 2022 were included in this review, including 391 animal models. In general, aVNS demonstrated a reduction in neurological deficits (SMD = -1.97, 95% CI -2.57 to -1.36, I2 = 44%), in time to perform the adhesive removal test (SMD = -2.26, 95% CI -4.45 to -0.08, I2 = 81%), and infarct size (SMD = -1.51, 95% CI -2.42 to -0.60, I2 = 58%). Regarding the neuroplasticity markers, aVNS showed to increase microcapillary density, CD31 proliferation, and BDNF protein levels and RNA expression. CONCLUSIONS: The studies analyzed show a trend of results that demonstrate a significant effect of the auricular vagal nerve stimulation in stroke animal models. Although the aggregated results show high heterogeneity and high risk of bias. More studies are needed to create solid conclusions.


Assuntos
Acidente Vascular Cerebral , Estimulação Elétrica Nervosa Transcutânea , Estimulação do Nervo Vago , Animais , Estimulação do Nervo Vago/métodos , Acidente Vascular Cerebral/terapia , Modelos Animais
2.
J Int Soc Phys Rehabil Med ; 5(4): 129-148, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36583065

RESUMO

Mind-body therapies (MBTs) use mental abilities to modify electrical neural activity across brain networks. Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that modulates neuronal membrane potentials to enhance neuroplasticity. A combination of these treatment strategies may generate synergistic or additive effects, and thus has been more commonly tested in clinical trials, fostering a novel yet promising field of research. We conducted a literature search in four different databases including only randomized clinical trials (RCTs) that tested the combination of MBTs with tDCS. Ten studies (n=461) were included. Combined protocols included meditation/mindfulness (8/10), biofeedback (1/10), and hypnosis (1/10). The RCTs were heterogeneous with regards to population, design, and types of outcomes. Based on the findings of this search, we provide here a content description, methodological and practical insights, and future directions for the field. We hope this review will provide future authors with information to facilitate the development of trials with improved protocols.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA