Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(56): 118280-118290, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37737946

RESUMO

Terminal heat during reproductive stages of wheat (Triticum aestivum L.) limits the productivity of the crop. Magnesium (Mg) is an essential macronutrient that is involved in many physiological and biochemical processes to affect photosynthesis and seed weight. The present study comparatively evaluated Mg applied to soil (80 kg MgSO4·7H2O ha-1) and to plant foliage (4% w/v) in improving wheat performance under terminal heat. Wheat crop was grown in two sets of treatments until the booting stage, and then one set of plants was shifted to a glasshouse (±5 °C) at the booting stage to grow until maturity in comparison to control plants kept under ambient warehouse condition. Heat stress reduced the pollen viability while foliar- and soil-applied Mg improved it by 3% and 6% under heat stress, respectively, compared to the control without Mg treatment. The 100-seed weight, spike length, and biological yield reduced by 39%, 19%, and 50% under heat stress; however, foliar and soil application increased 100-seed weight by 45% and 40%, spike length by 8% and 5%, and biological yield by 35% and 25% under heat stress, respectively. Soil Mg showed maximum SPAD chlorophyll values; however, response was statistically similar to that of foliar Mg as compared to the control without Mg supply. Membrane stability decreased (4%) due to heat stress while foliar and soil treatments improved membrane stability by 8% and 5% compared to that of the control, respectively. Thus, Mg application through soil or plant foliage can be an effective way to reduce negative impacts of terminal heat in wheat by improving pollen viability at anthesis and 100-seed weight that was attributed to increased chlorophyll contents during anthesis.


Assuntos
Magnésio , Triticum , Magnésio/farmacologia , Temperatura , Sementes , Clorofila/farmacologia , Solo/química , Pólen , Fertilização
2.
Plant Physiol Biochem ; 158: 43-52, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33296845

RESUMO

Globally, salinity threatens the agricultural crops productivity by inhibiting plant growth and development through osmotic stress and ionic cytotoxicity. The polygenic nature of salinity offers several pragmatic shotgun approaches to improve salinity tolerance. The present study investigated the potential of glutathione (GSH; 1 mM) as an antioxidant and moringa leaf extract (MLE; 3%) as an organic biostimulant applied in sequence as seed priming and foliar spray on wheat growth, physiology and metabolic adaptation under saline conditions (9.16 dS m-1). Plants without any treatment and water spray (H2O) were considered controls. Salinity induced osmotic stress reduced the plant tissue water status and photosynthetic performance, and perturbed ionic (K+/Na+, Ca2+/Na+, K++Ca2+/Na+) and hormonal (IAA, GA3, zeatin, ABA) homeostasis, consequently affected growth and yield in wheat. Sequenced applied MLE and/or GSH improved osmotic stress tolerance by stabilizing membrane integrity and decreasing electrolyte leakage. These positive results were owed to enhanced endogenous GSH and ascorbate levels. Improved tissue water status was attributed to increased osmotic adjustment, better ionic and hormonal homeostasis contributed to improving photosynthetic efficiency and growth under salinity. Exogenously applied MLE and GSH sequences improved grain yield, which was attributed to the maintenance of green leaf area and delayed senescence associated with an increase in photosynthetic pigments and chlorophyll fluorescence traits. In crux, exogenous applied MLE and/or GSH can be the best physiological strategy to reduce the deleterious effects of salinity and improve physiological and metabolic adaptation in wheat under saline field conditions.


Assuntos
Antioxidantes/farmacologia , Glutationa/farmacologia , Extratos Vegetais/farmacologia , Estresse Salino , Triticum/fisiologia , Adaptação Fisiológica , Moringa/química , Fotossíntese
3.
Animals (Basel) ; 10(9)2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32971839

RESUMO

The present study investigates the antidiabetic potential of polyphenol extracts purified from guava pulp, seeds and leaves using an in vivo experiment on albino rats. The polyphenols from guava pulp, seeds and leaves were extracted using methanol solvent and the sonication method while being evaluated by total phenolic contents and radical scavenging activity assay. The proximate composition of powders revealed that ash, protein and total sugars were significantly (p < 0.05) higher in leaves and seeds, while vitamin C was highest in pulp. Total phenolic and antioxidant activities were highest in pulp followed by leaves and seeds. The findings of feed intake and body gain revealed that the supplementation of polyphenols, especially from pulp, significantly (p < 0.05) increased the feed intake, which resulted in increased body weight. Moreover, total cholesterol (TC) and low-density lipoprotein (LDL) levels were significantly (p < 0.05) decreased, while the level of high-density lipoprotein (HDL) was increased in groups fed with polyphenols from guava pulp compared to both (+ive and -ive) control groups. Furthermore, blood glucose and triglycerides were significantly (p < 0.05) decreased in supplemented groups compared to the control group of diabetes mice, which resulted in the inhibition of α-amylase and glucose transport. Besides this, packed cell volume (PCV), mean corpuscular volume (MCV), hemoglobin, red blood cells (RBCs), white blood cells (WBCs) and platelet levels were increased significantly (p < 0.05) in pulp's extract followed by leaves and seeds compared to both control groups. Overall, the antidiabetic potential of different extracts was in the following order: pulp > leaves > seeds. The findings suggest the feasibility of adding 200-250 mg/kg.bw of polyphenol extracts of pulp as an alternative to diabetic drugs.

4.
Environ Sci Pollut Res Int ; 24(35): 27601-27612, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28980120

RESUMO

Wheat is staple food of region, as it contributes 60% of daily caloric intake, but its delayed sowing reduces yield due to short life span. Moringa leaf extract (MLE) is considered to improve growth and development of field crops. Study comprised of two experiments. First experiment, freshly extracted MLE and in combination with growth-promoting substances were stored at two temperature regimes. Chemical analysis, after 1, 2, and 3 months' storage period, showed that phenolics and ascorbic acid concentrations decreased with increasing storage period. Fresh extracts improved speed and spread of emergence and seedling vigor. Effectiveness of MLE in terms of phenolics and ascorbate concentrations was highest up to 1 month which decreased with prolonged storage. Growth enhancing potential of MLE also reduced with increasing storage duration. Under field conditions, the bio-efficacy of these fresh and stored MLE was compared when applied as foliar spray at tillering and booting stages of wheat. Foliar applied fresh MLE was the most effective in improving growth parameters. Fresh MLE enhanced biochemical and yield attributes in late sown wheat. This growth-promoting potential of MLE decreased with storage time. Application of fresh MLE helped to achieve higher economic yield.


Assuntos
Produtos Agrícolas/efeitos dos fármacos , Moringa oleifera/química , Extratos Vegetais/farmacologia , Plântula/efeitos dos fármacos , Triticum/efeitos dos fármacos , Produtos Agrícolas/crescimento & desenvolvimento , Armazenamento de Medicamentos , Extratos Vegetais/isolamento & purificação , Folhas de Planta/química , Plântula/crescimento & desenvolvimento , Temperatura , Fatores de Tempo , Triticum/crescimento & desenvolvimento
5.
Environ Sci Pollut Res Int ; 24(6): 5811-5823, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28054268

RESUMO

Crop nutrient management is an essential component of any cropping system. With increasing concerns over environmental protection, improvement in fertilizer use efficiencies has become a prime goal in global agriculture system. Phosphorus (P) is one of the most important nutrients, and strategies are required to optimize its use in important arable crops like cotton (Gossypium hirsutum L.) that has great significance. Sustainable P use in crop production could significantly avoid environmental hazards resulting from over-P fertilization. Crop growth modeling has emerged as an effective tool to assess and predict the optimal nutrient requirements for different crops. In present study, Decision Support System for Agro-technology Transfer (DSSAT) sub-model CSM-CROPGRO-Cotton-P was evaluated to estimate the observed and simulated P use in two cotton cultivars grown at three P application rates under the semi-arid climate of southern Punjab, Pakistan. The results revealed that both the cultivars performed best at medium rate of P application (57 kg ha-1) in terms of days to anthesis, days to maturity, seed cotton yield, total dry matter production, and harvest index during 2013 and 2014. Cultivar FH-142 performed better than MNH-886 in terms of different yield components. There was a good agreement between observed and simulated days to anthesis (0 to 1 day), days to maturity (0 to 2 days), seed cotton yield, total dry matter, and harvest index with an error of -4.4 to 15%, 12-7.5%, and 13-9.5% in MNH-886 and for FH-142, 4-16%, 19-11%, and 16-8.3% for growing years 2013 and 2014, respectively. CROPGRO-Cotton-P would be a useful tool to forecast cotton yield under different levels of P in cotton production system of the semi-arid climate of Southern Punjab.


Assuntos
Clima Desértico , Gossypium , Modelos Teóricos , Fósforo , Agricultura/métodos , Produtos Agrícolas , Fertilizantes , Paquistão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA