Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nutrients ; 13(1)2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33396458

RESUMO

Both pre- and early postnatal supplementation with docosahexaenoic acid (DHA), arachidonic acid (AA) and folate have been related to neural development, but their long-term effects on later neural function remain unclear. We evaluated the long-term effects of maternal prenatal supplementation with fish-oil (FO), 5-methyltetrahydrofolate (5-MTHF), placebo or FO + 5-MTHF, as well as the role of fatty acid desaturase (FADS) gene cluster polymorphisms, on their offspring's processing speed at later school age. This study was conducted in NUHEAL children at 7.5 (n = 143) and 9 years of age (n = 127). Processing speed tasks were assessed using Symbol Digit Modalities Test (SDMT), Children Color Trails Test (CCTT) and Stroop Color and Word Test (SCWT). Long-chain polyunsaturated fatty acids, folate and total homocysteine (tHcy) levels were determined at delivery from maternal and cord blood samples. FADS and methylenetetrahydrofolate reductase (MTHFR) 677 C > T genetic polymorphisms were analyzed. Mixed models (linear and logistic) were performed. There were significant differences in processing speed performance among children at different ages (p < 0.001). The type of prenatal supplementation had no effect on processing speed in children up to 9 years. Secondary exploratory analyses indicated that children born to mothers with higher AA/DHA ratio at delivery (p < 0.001) and heterozygotes for FADS1 rs174556 (p < 0.05) showed better performance in processing speed at 9 years. Negative associations between processing speed scores and maternal tHcy levels at delivery were found. Our findings suggest speed processing development in children up to 9 years could be related to maternal factors, including AA/DHA and tHcy levels, and their genetic background, mainly FADS polymorphism. These considerations support that maternal prenatal supplementation should be quantitatively adequate and individualized to obtain better brain development and mental performance in the offspring.


Assuntos
Desenvolvimento Infantil/fisiologia , Cognição/fisiologia , Suplementos Nutricionais , Ácidos Graxos Dessaturases/genética , Fenômenos Fisiológicos da Nutrição Materna/fisiologia , Adulto , Encéfalo/crescimento & desenvolvimento , Criança , Dessaturase de Ácido Graxo Delta-5 , Ácidos Docosa-Hexaenoicos/administração & dosagem , Ácidos Docosa-Hexaenoicos/sangue , Ácidos Graxos Dessaturases/metabolismo , Feminino , Sangue Fetal/química , Seguimentos , Homocisteína/sangue , Humanos , Fenômenos Fisiológicos da Nutrição do Lactente/fisiologia , Recém-Nascido , Masculino , Idade Materna , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Família Multigênica/genética , Polimorfismo Genético , Gravidez , Teste de Stroop , Tetra-Hidrofolatos/administração & dosagem , Adulto Jovem
2.
Br J Nutr ; 122(s1): S68-S79, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31638497

RESUMO

Variants in the human genes of fatty acid (FA) desaturase 1 (FADS1), 2 (FADS2) and 3 (FADS3) are associated with PUFA blood levels. We explored if maternal prenatal supplementation and children's genetic variation in seventeen SNP of the FADS1, FADS2 and FADS3 gene cluster influence twenty-one of the most relevant cheek cells' derived FA in glycerophospholipids (GPL-FA). The study was conducted in 147 Spanish and German mother-children pairs participating in the Nutraceuticals for a Healthier Life (NUHEAL) study at 8, 9 and 9·5 years. Linear and mixed model longitudinal regression analyses were performed. Maternal fish-oil (FO) or FO+5-methyltetrahydrofolate (5-MTHF) supplementation during pregnancy was associated with a significant decrease of arachidonic acid (AA) concentrations in cheek cell GPL in the offspring, from 8 to 9·5 years; furthermore, maternal FO+5-MTHF supplementation was associated with higher n-6 docosapentaenoic acid concentrations in their children at age 8 years. FADS1 rs174556 polymorphism and different FADS2 genotypes were associated with higher concentrations of linoleic and α-linolenic acids in children; moreover, some FADS2 genotypes determined lower AA concentrations in children's cheek cells. It is suggested an interaction between type of prenatal supplementation and the offspring genetic background driving GPL-FA levels at school age. Prenatal FO supplementation, and/or with 5-MTHF, seems to stimulate n-3 and n-6 FA desaturation in the offspring, increasing long-chain PUFA concentrations at school age, but depending on children's FADS1 and FADS2 genotypes. These findings suggest potential early nutrition programming of FA metabolic pathways, but interacting with children's FADS polymorphisms.


Assuntos
Ácidos Graxos Dessaturases/genética , Ácidos Graxos/análise , Glicerofosfolipídeos/química , Mucosa Bucal/química , Ácido Araquidônico/análise , Bochecha , Criança , Dessaturase de Ácido Graxo Delta-5 , Suplementos Nutricionais , Feminino , Óleos de Peixe/administração & dosagem , Genótipo , Alemanha , Humanos , Masculino , Mucosa Bucal/citologia , Família Multigênica/genética , Polimorfismo de Nucleotídeo Único/genética , Gravidez , Cuidado Pré-Natal/métodos , Espanha , Tetra-Hidrofolatos/administração & dosagem
3.
Nutrients ; 10(12)2018 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-30544518

RESUMO

Children with phenylketonuria (PKU) follow a protein restricted diet with negligible amounts of docosahexaenoic acid (DHA). Low DHA intakes might explain subtle neurological deficits in PKU. We studied whether a DHA supply modified plasma DHA and neurological and intellectual functioning in PKU. In a double-blind multicentric trial, 109 PKU patients were randomized to DHA doses from 0 to 7 mg/kg&day for six months. Before and after supplementation, we determined plasma fatty acid concentrations, latencies of visually evoked potentials, fine and gross motor behavior, and IQ. Fatty acid desaturase genotypes were also determined. DHA supplementation increased plasma glycerophospholipid DHA proportional to dose by 0.4% DHA per 1 mg intake/kg bodyweight. Functional outcomes were not associated with DHA status before and after intervention and remained unchanged by supplementation. Genotypes were associated with plasma arachidonic acid levels and, if considered together with the levels of the precursor alpha-linolenic acid, also with DHA. Functional outcomes and supplementation effects were not significantly associated with genotype. DHA intakes up to 7 mg/kg did not improve neurological functions in PKU children. Nervous tissues may be less prone to low DHA levels after infancy, or higher doses might be required to impact neurological functions. In situations of minimal dietary DHA, endogenous synthesis of DHA from alpha-linolenic acid could relevantly contribute to DHA status.


Assuntos
Cognição/efeitos dos fármacos , Ácidos Docosa-Hexaenoicos/sangue , Ácidos Docosa-Hexaenoicos/uso terapêutico , Destreza Motora/efeitos dos fármacos , Fenilcetonúrias/tratamento farmacológico , Fenilcetonúrias/fisiopatologia , Adolescente , Criança , Ácidos Graxos Dessaturases/genética , Feminino , Humanos , Masculino , Fenilcetonúrias/epidemiologia , Fenilcetonúrias/genética
4.
Eur J Nutr ; 57(7): 2583-2594, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28929400

RESUMO

PURPOSE: The enzymes encoded by fatty acid desaturases (FADS) genes determine the desaturation of long-chain polyunsaturated fatty acids (LCPUFA). We investigated if haplotype and single nucleotide polymorphisms (SNPs) in FADS gene cluster can influence LCPUFA status in infants who received either fish oil or placebo supplementation. METHODS: Children enrolled in the Infant Fish Oil Supplementation Study (IFOS) were randomly allocated to receive either fish oil or placebo from birth to 6 months of age. Blood was collected at 6 months of age for the measurement of fatty acids and for DNA extraction. A total of 276 participant DNA samples underwent genotyping, and 126 erythrocyte and 133 plasma fatty acid measurements were available for analysis. Twenty-two FADS SNPs were selected on the basis of literature and linkage disequilibrium patterns identified from the HapMap data. Haplotype construction was completed using PHASE. RESULTS: For participants allocated to the fish oil group who had two copies of the FADS1 haplotype consisting of SNP minor alleles, DHA levels were significantly higher compared to other haplotypes. This finding was not observed for the placebo group. Furthermore, for members of the fish oil group only, the minor homozygous carriers of all the FADS1 SNPs investigated had significantly higher DHA than other genotypes (rs174545, rs174546, rs174548, rs174553, rs174556, rs174537, rs174448, and rs174455). CONCLUSIONS: Overall results of this preliminary study suggest that supplementation with fish oil may only significantly increase DHA in minor allele carriers of FADS1 SNPs. Further research is required to confirm this novel finding.


Assuntos
Eritrócitos/química , Ácidos Graxos Dessaturases/genética , Ácidos Graxos/metabolismo , Óleos de Peixe/administração & dosagem , Polimorfismo de Nucleotídeo Único , Dessaturase de Ácido Graxo Delta-5 , Feminino , Humanos , Lactente , Masculino , Família Multigênica
5.
Diabetes ; 65(3): 574-84, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26631738

RESUMO

Maternal obesity is a worldwide problem associated with increased risk of metabolic diseases in the offspring. Genetic deletion of the gastric inhibitory polypeptide (GIP) receptor (GIPR) prevents high-fat diet (HFD)-induced obesity in mice due to specific changes in energy and fat cell metabolism. We investigated whether GIP-associated pathways may be targeted by fetal programming and mimicked the situation by exposing pregnant mice to control or HFD during pregnancy (intrauterine [IU]) and lactation (L). Male wild-type (WT) and Gipr(-/-) offspring received control chow until 25 weeks of age followed by 20 weeks of HFD. Gipr(-/-) offspring of mice exposed to HFD during IU/L became insulin resistant and obese and exhibited increased adipose tissue inflammation and decreased peripheral tissue substrate utilization after being reintroduced to HFD, similar to WT mice on regular chow during IU/L. They showed decreased hypothalamic insulin sensitivity compared with Gipr(-/-) mice on control diet during IU/L. DNA methylation analysis revealed increased methylation of CpG dinucleotides and differential transcription factor binding of promoter regions of genes involved in lipid oxidation in the muscle of Gipr(-/-) offspring on HFD during IU/L, which were inversely correlated with gene expression levels. Our data identify GIP-regulated metabolic pathways that are targeted by fetal programming.


Assuntos
Dieta Hiperlipídica , Desenvolvimento Fetal/genética , Polipeptídeo Inibidor Gástrico/metabolismo , Hipotálamo/metabolismo , Resistência à Insulina/genética , Obesidade/genética , Efeitos Tardios da Exposição Pré-Natal/genética , RNA Mensageiro/metabolismo , Receptores dos Hormônios Gastrointestinais/genética , Tecido Adiposo , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/patologia , Animais , Ilhas de CpG , Metilação de DNA , Ensaio de Desvio de Mobilidade Eletroforética , Feminino , Regulação da Expressão Gênica , Teste de Tolerância a Glucose , Inflamação , Lactação , Masculino , Redes e Vias Metabólicas , Camundongos , Camundongos Knockout , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Gravidez , Complicações na Gravidez/metabolismo , Regiões Promotoras Genéticas , Reação em Cadeia da Polimerase em Tempo Real
6.
Eur J Nutr ; 55(4): 1633-44, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26169870

RESUMO

PURPOSE: Introduction of complementary food usually leads to decreasing intakes of long-chain n-3 polyunsaturated fatty acids (n-3 LC-PUFA), compared to full breastfeeding. In the randomised controlled PINGU intervention trial, we tested the effects of complementary foods with different contents of alpha-linolenic acid (ALA) and docosahexaenoic acid (DHA) on term infant LC-PUFA status. METHODS: Healthy infants born at term were randomised to receive from the introduction of complementary feeding at the age of 4 to 6 months until age of 10 months ready-made complementary meals either with ALA-rich rapeseed oil (intervention group (IG)-R), with salmon twice weekly to provide preformed DHA (IG-F), or with linoleic acid-rich corn oil (control group, CG). Fatty acid composition was assessed in erythrocyte (RBC) and plasma glycerophospholipids. RESULTS: Complete data of fatty acids in RBC (plasma) were available from 158 (155) infants. After intervention, infants assigned to IG-F showed higher RBC and plasma percentages of eicosapentaenoic acid (EPA), DHA, and total n-3 LC-PUFA than CG (each p < 0.001). In IG-R, levels of ALA and the ratio of ALA to LA in plasma and RBC (all p < 0.0001) as well as RBC-EPA (p < 0.0001) were higher than in CG, while DHA levels did not differ between IG-R and CG. CONCLUSIONS: Regular fish consumption during complementary feeding enhances infant EPA and DHA status. The usage of rapeseed oil in small amounts concordant with EU-law for commercial meals enhances endogenic EPA-synthesis, but does not affect DHA status. Provision of oily fish with complementary feeds is advisable to prevent a decline of DHA status. CLINICAL TRIAL REGISTRATION: www.clinicaltrials.gov , identifier: NCT01487889, title: Polyunsaturated fatty acids in child nutrition-a German multimodal optimisation study (PINGU).


Assuntos
Dieta , Ácidos Docosa-Hexaenoicos/administração & dosagem , Ácido Eicosapentaenoico/administração & dosagem , Fenômenos Fisiológicos da Nutrição do Lactente , Estado Nutricional , Ácido alfa-Linolênico/administração & dosagem , Adulto , Animais , Estudos Transversais , Ácidos Docosa-Hexaenoicos/sangue , Ácido Eicosapentaenoico/sangue , Eritrócitos/metabolismo , Ácidos Graxos Dessaturases/genética , Feminino , Peixes , Glicerofosfolipídeos/sangue , Humanos , Lactente , Ácido Linoleico/administração & dosagem , Ácido Linoleico/sangue , Masculino , Família Multigênica , Óleos de Plantas/administração & dosagem , Polimorfismo de Nucleotídeo Único , Óleo de Brassica napus , Alimentos Marinhos , Ácido alfa-Linolênico/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA