Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
FEMS Microbiol Ecol ; 100(2)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38281064

RESUMO

Diets rich in readily fermentable carbohydrates primarily impact microbial composition and activity, but can also impair the ruminal epithelium barrier function. By combining microbiota, metabolome, and gene expression analysis, we evaluated the impact of feeding a 65% concentrate diet for 4 weeks, with or without a phytogenic feed additive (PFA), on the rumen ecosystem of cattle. The breaking point for rumen health seemed to be the second week of high grain (HG) diet, with a dysbiosis characterized by reduced alpha diversity. While we did not find changes in histological evaluations, genes related with epithelial proliferation (IGF-1, IGF-1R, EGFR, and TBP) and ZO-1 were affected by the HG feeding. Integrative analyses allowed us to define the main drivers of difference for the rumen ecosystem in response to a HG diet, identified as ZO-1, MyD88, and genus Prevotella 1. PFA supplementation reduced the concentration of potentially harmful compounds in the rumen (e.g. dopamine and 5-aminovaleric acid) and increased the tolerance of the epithelium toward the microbiota by altering the expression of TLR-2, IL-6, and IL-10. The particle-associated rumen liquid microbiota showed a quicker adaptation potential to prolonged HG feeding compared to the other microenvironments investigated, especially by the end of the experiment.


Assuntos
Dieta , Microbiota , Bovinos , Animais , Dieta/veterinária , Suplementos Nutricionais/análise , Metaboloma , Rúmen/metabolismo , Ração Animal/análise , Fermentação , Concentração de Íons de Hidrogênio
2.
J Proteomics ; 273: 104795, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36535624

RESUMO

Phytogenic compounds may influence salivation or salivary properties. However, their effects on the bovine salivary proteome have not been evaluated. We investigated changes in the bovine salivary proteome due to transition from forage to high-concentrate diet, with and without supplementation with a phytogenic feed additive. Eight non-lactating cows were fed forage, then transitioned to a 65% concentrate diet (DM basis) over a week. Cows were control (n = 4, CON) or supplemented with a phytogenic feed additive (n = 4, PHY). Proteomic analysis was conducted using liquid chromatography coupled with mass spectrometry. We identified 1233 proteins; 878 were bovine proteins, 189 corresponded to bacteria, and 166 were plant proteins. Between forage and high-concentrate, 139 proteins were differentially abundant (P < 0.05), with 48 proteins having a log2FC difference > |2|. The salivary proteome reflected shifts in processes involving nutrient utilization, body tissue accretion, and immune response. Between PHY and CON, 195 proteins were differently abundant (P < 0.05), with 37 having a log2FC difference > |2|; 86 proteins were increased by PHY, including proteins involved in smell recognition. Many differentially abundant proteins correlated (r > |0.70|) with salivary bicarbonate, total mucins or pH. Results provide novel insights into the bovine salivary proteome using a non-invasive approach, and the association of specific proteins with major salivary properties influencing rumen homeostasis. SIGNIFICANCE: Phytogenic compounds may stimulate salivation due to their olfactory properties, but their effects on the salivary proteome have not been investigated. We investigated the effect of high-concentrate diets and supplementation with a phytogenic additive on the salivary proteome of cows. We show that analysis of cows' saliva can be a non-invasive approach to detect effects occurring not only in the gut, but also systemically including indications for gut health and immune response. Thus, results provide unique insights into the bovine salivary proteome, and will have a crucial contribution to further understand animal response in terms of nutrient utilization and immune activity due to the change from forage to a high-energy diet. Additionally, our findings reveal changes due to supplementation with a phytogenic feed additive with regard to health and olfactory stimulation. Furthermore, findings suggest an association between salivary proteins and other components like bicarbonate content.


Assuntos
Bicarbonatos , Proteoma , Feminino , Bovinos , Animais , Proteoma/metabolismo , Bicarbonatos/análise , Bicarbonatos/metabolismo , Bicarbonatos/farmacologia , Proteômica , Lactação , Ração Animal/análise , Concentração de Íons de Hidrogênio , Dieta/veterinária , Suplementos Nutricionais/análise , Leite/metabolismo , Fermentação
3.
Genomics ; 114(3): 110333, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35278616

RESUMO

The rumen epithelium has a pivotal role in nutrient uptake and host health. This study aimed to explore the role of microRNAs (miRNAs) in the epithelial transcriptome during diet transition from forage to high-grain feeding and the modulation through supplementation with a phytogenic feed additive. Rumen biopsies were collected from 9 ruminally-cannulated non-lactating Holstein cows fed a baseline forage diet (FD) and then transitioned to high-grain feeding (HG; 65% concentrate on a dry matter basis). Cows were randomly allocated into a control group (CON, n = 5) and a group supplemented with a phytogenic feed additive (PHY, n = 4). MiRNA and mRNA sequencing was performed in parallel and transcripts were analyzed for differential expression, pathway enrichment analysis, and miRNA-mRNA interaction networks. We identified 527 miRNAs shared by all samples of the rumen epithelium, from which, bta-miR-21-5p, bta-miR-143 and bta-miR-24-3p were the most expressed. Six miRNAs were differentially expressed between CON and PHY and 8 miRNAs between FD and HG feeding, which were mainly associated with fat metabolism. Transcriptome analysis identified 9481 differentially expressed genes (DEGs) between FD and HG, whereas PHY supplementation resulted in 5 DEGs. DEGs were mainly involved in epithelium development and morphogenesis. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways associated with tricarboxylic acid and short chain fatty acid (SCFA) metabolism were enriched in DEGs between diets. MiRNA target prediction and anti-correlation analysis was used to construct networks and identify DEGs targeted by DE miRNAs responsive to diet or PHY. This study allowed the identification of potential miRNA regulation mechanisms of gene expression during transition from FD to HG feeding and phytogenic supplementation, evidencing a direct role of miRNAs in host responses to nutrition.


Assuntos
MicroRNAs , Animais , Bovinos , Feminino , Suplementos Nutricionais , Regulação da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo , Rúmen/metabolismo
4.
Planta Med ; 88(3-04): 262-273, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34144625

RESUMO

In intensive farming, piglets are exposed to various challenges that activate intestinal inflammatory processes, negatively affecting animal health and leading to economic losses. To study the role of the inflammatory response on epithelial barrier integrity, co-culture systems that mimic in vivo complexity are more and more preferred over cell monocultures. In this study, an in vitro gut co-culture model consisting of intestinal porcine epithelial cells and porcine peripheral blood mononuclear cells was established. The model provides an appropriate tool to study the role of the inflammatory response on epithelial barrier integrity and to screen for feed and food components, exerting beneficial effects on gut health. In the established model, inflammation-like reactions and damage of the epithelial barrier, indicated by a decrease of transepithelial electrical resistance, were elicited by activation of peripheral blood mononuclear cells via one of 3 stimuli: lipopolysaccharide, lipoteichoic acid, or concanavalin A. Two phytogenic substances that are commonly used as feed additives, licorice extract and oregano oil, have been shown to counteract the drop in transepithelial electrical resistance values in the gut co-culture model. The established co-culture model provides a powerful in vitro tool to study the role of intestinal inflammation on epithelial barrier integrity. As it consists of porcine epithelial and porcine blood cells it perfectly mimics in vivo conditions and imitates the inter-organ communication of the piglet gut. The developed model is useful to screen for nutritional components or drugs, having the potential to balance intestinal inflammation and strengthen the epithelial barrier integrity in piglets.


Assuntos
Células Epiteliais , Leucócitos Mononucleares , Animais , Técnicas de Cocultura , Células Epiteliais/fisiologia , Inflamação/induzido quimicamente , Mucosa Intestinal , Suínos
5.
Front Vet Sci ; 8: 714545, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34722695

RESUMO

Starch-rich diets are a commonly adopted strategy in order to sustain high milk yields in dairy cows. However, these diets are known to increase the risk of gut dysbiosis and related systemic health disorders. This study aimed to evaluate the effects of supplementing a clay mineral-based feed additive (CM; Mycofix® Plus, BIOMIN) on fecal microbiota structure, fecal short-chain fatty acid (SCFA) fermentation, serum metabolome, and liver health in primiparous (PP, n = 8) and multiparous (MP, n = 16) early-lactation Simmental cows (737 ± 90 kg of live body weight). Cows were randomly assigned to either a control or CM group (55 g per cow and day) and transitioned from a diet moderate in starch (26.3 ± 1.0%) to a high starch diet (32.0 ± 0.8%). Supplementation of CM reversed the decrease in bacterial diversity, richness, and evenness (p < 0.05) during high-starch diet, demonstrating that CM supplementation efficiently eased hindgut dysbiosis. The CM treatment reduced levels of Lactobacillus in PP cows during starch-rich feeding and elevated fecal pH, indicating a healthier hindgut milieu compared with that in control. Butyrate and propionate levels were modulated by CM supplementation, with butyrate being lower in CM-treated MP cows, whereas propionate was lower in MP but higher in PP cows. Supplementing CM during high-starch feeding increased the concentrations of the main primary bile salts and secondary bile acids in the serum and improved liver function in cows as indicated by reduced levels of glutamate dehydrogenase and γ-glutamyl-transferase, as well as higher serum albumin and triglyceride concentrations. These changes and those related to lipid serum metabolome were more pronounced in PP cows as also corroborated by relevance network analysis.

6.
Anaerobe ; 59: 38-48, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31102775

RESUMO

The increased concentrate amounts in cow diets may initiate changes in both particle-associated (PaM) and epimural microbiota (EpM) with the potential for promoting the establishment of pathogens. Clay minerals have shown promising potentials in binding harmful microorganisms and metabolites due to their high adsorption capacity. This study evaluated the effects of a clay-mineral based product (CM) on PaM, EpM, fermentation parameters, and epithelial gene expression in cows fed a high-concentrate diet. Eight rumen-cannulated non-lactating Holstein cows received a concentrate mix supplemented with CM or not (CON) in a change-over design with an initial 100% roughage diet phase (RD, 1 week), followed by intermittent 65%-high-concentrate-diet phases (HC1, HC2; 1 and 2 week duration, respectively), interrupted by 1 week roughage only. Rumen samples for short-chain fatty acids, ammonia, and lactate quantification, as well as PaM, and epithelial biopsies for EpM examination and epithelial gene expression were collected via the cannula once during each feeding phase. Phylogenetic distance analysis of Illumina MiSeq sequencing of the 16S rRNA gene region V345 showed a clear clustering of RD microbiota compared to HC in PaM, showing the impact of the high-concentrate diet on the bacterial community. In the EpM this effect was less pronounced, due to higher variability in RD. In the PaM, a decrease (P < 0.01) of community diversity occurred with the onset of HC feeding, while in the EpM there was an increase in diversity (P < 0.05). In the PaM, CM increased the relative abundance of genus Butyrivibrio (P < 0.01), a commensal bacterium of the rumen, which was, with 6.4%, the second most abundant genus. There, the CM supplementation decreased the genera Lactobacillus, Fusobacterium, and Treponema (P = 0.05), which are potentially either lactate producing or opportunistic pathogens. In the EpM, CM decreased the relative abundance of Succiniclasticum genus (P < 0.01), a possible endotoxin producer, and increased bacteria that are associated with a normobiotic rumen, such as Campylobacter (P = 0.06). Barrier function genes were upregulated in HC2 and nutrient transport genes downregulated in HC1 (P < 0.05); however, there was little effect on pro-inflammatory genes at the epithelium. The CM showed a significant decreasing effect on the cellular metabolism genes HMGCS1 (P = 0.04). Our results suggest that CM supplementation can increase the relative abundance of commensal microbiota and decrease bacteria that could negatively impact the rumen milieu and health during high-concentrate feeding.


Assuntos
Argila/química , Dieta/métodos , Regulação da Expressão Gênica/efeitos dos fármacos , Microbiota/efeitos dos fármacos , Minerais/administração & dosagem , Rúmen/microbiologia , Amônia/análise , Animais , Bovinos , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Ácidos Graxos Voláteis/análise , Fermentação/efeitos dos fármacos , Lactatos/análise , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
7.
Toxins (Basel) ; 6(10): 2962-74, 2014 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-25290524

RESUMO

The pathogenesis of laminitis is not completely identified and the role of endotoxins (lipopolysaccharides, LPS) in this process remains unclear. Phytogenic substances, like milk thistle (MT) and silymarin, are known for their anti-inflammatory and antioxidant properties and might therefore have the potential to counteract endotoxin induced effects on the hoof lamellar tissue. The aim of our study was to investigate the influence of endotoxins on lamellar tissue integrity and to test if MT and silymarin are capable of inhibiting LPS-induced effects in an in vitro/ex vivo model. In preliminary tests, LPS neutralization efficiency of these phytogenics was determined in an in vitro neutralization assay. Furthermore, tissue explants gained from hooves of slaughter horses were tested for lamellar separation after incubation with different concentrations of LPS. By combined incubation of explants with LPS and either Polymyxin B (PMB; positive control), MT or silymarin, the influence of these substances on LPS-induced effects was assessed. In the in vitro neutralization assay, MT and silymarin reduced LPS concentrations by 64% and 75%, respectively, in comparison PMB reduced 98% of the LPS concentration. In hoof explants, LPS led to a concentration dependent separation. Accordantly, separation force was significantly decreased by 10 µg/mL LPS. PMB, MT and silymarin could significantly improve tissue integrity of explants incubated with 10 µg/mL LPS. This study showed that LPS had a negative influence on the structure of hoof explants in vitro. MT and silymarin reduced endotoxin activity and inhibited LPS-induced effects on the lamellar tissue. Hence, MT and silymarin might be used to support the prevention of laminitis and should be further evaluated for this application.


Assuntos
Casco e Garras/efeitos dos fármacos , Extratos Vegetais/farmacologia , Silybum marianum/química , Silimarina/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Endotoxinas/toxicidade , Casco e Garras/patologia , Técnicas In Vitro , Lipopolissacarídeos/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA