Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Diabetologia ; 67(4): 738-754, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38236410

RESUMO

AIMS/HYPOTHESIS: Sodium-glucose co-transporter 2 (SGLT2) inhibitors (SGLT2i) are antihyperglycaemic drugs that protect the kidneys of individuals with type 2 diabetes mellitus. However, the underlying mechanisms mediating the renal benefits of SGLT2i are not fully understood. Considering the fuel switches that occur during therapeutic SGLT2 inhibition, we hypothesised that SGLT2i induce fasting-like and aestivation-like metabolic patterns, both of which contribute to the regulation of metabolic reprogramming in diabetic kidney disease (DKD). METHODS: Untargeted and targeted metabolomics assays were performed on plasma samples from participants with type 2 diabetes and kidney disease (n=35, 11 women) receiving canagliflozin (CANA) 100 mg/day at baseline and 12 week follow-up. Next, a systematic snapshot of the effect of CANA on key metabolites and pathways in the kidney was obtained using db/db mice. Moreover, the effects of glycine supplementation in db/db mice and human proximal tubular epithelial cells (human kidney-2 [HK-2]) cells were studied. RESULTS: Treatment of DKD patients with CANA for 12 weeks significantly reduced HbA1c from a median (interquartile range 25-75%) of 49.0 (44.0-57.0) mmol/mol (7.9%, [7.10-9.20%]) to 42.2 (39.7-47.7) mmol/mol (6.8%, [6.40-7.70%]), and reduced urinary albumin/creatinine ratio from 67.8 (45.9-159.0) mg/mmol to 47.0 (26.0-93.6) mg/mmol. The untargeted metabolomics assay showed downregulated glycolysis and upregulated fatty acid oxidation. The targeted metabolomics assay revealed significant upregulation of glycine. The kidneys of db/db mice undergo significant metabolic reprogramming, with changes in sugar, lipid and amino acid metabolism; CANA regulated the metabolic reprogramming in the kidneys of db/db mice. In particular, the pathways for glycine, serine and threonine metabolism, as well as the metabolite of glycine, were significantly upregulated in CANA-treated kidneys. Glycine supplementation ameliorated renal lesions in db/db mice by inhibiting food intake, improving insulin sensitivity and reducing blood glucose levels. Glycine supplementation improved apoptosis of human proximal tubule cells via the AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway. CONCLUSIONS/INTERPRETATION: In conclusion, our study shows that CANA ameliorates DKD by inducing fasting-like and aestivation-like metabolic patterns. Furthermore, DKD was ameliorated by glycine supplementation, and the beneficial effects of glycine were probably due to the activation of the AMPK/mTOR pathway.


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Inibidores do Transportador 2 de Sódio-Glicose , Camundongos , Animais , Humanos , Feminino , Canagliflozina/farmacologia , Canagliflozina/uso terapêutico , Diabetes Mellitus Tipo 2/metabolismo , Nefropatias Diabéticas/metabolismo , Reprogramação Metabólica , Proteínas Quinases Ativadas por AMP/metabolismo , Transportador 2 de Glucose-Sódio/metabolismo , Estivação , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Inibidores do Transportador 2 de Sódio-Glicose/metabolismo , Rim/metabolismo , Jejum , Serina-Treonina Quinases TOR/metabolismo , Glicina/metabolismo , Mamíferos/metabolismo
2.
Biomed Res Int ; 2023: 4967544, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36874921

RESUMO

Yiqi Yangyin Decoction (YYD) is a classic traditional Chinese medicine (TCM) formulation to treat lung cancer in clinic. Nevertheless, the active ingredients, key targets, and molecular mechanisms for YYD are still poorly understood. This study is focused on elucidating the pharmacological mechanism of YYD in non-small-cell lung cancer (NSCLC) by using a combined network pharmacology approach and biological experiment validation. Online bioinformatics tools showed that 40 bioactive compounds and 229 putative targets of YYD were associated with anti-NSCLC activity. Protein-Protein Interaction (PPI) network demonstrated AKT1, SRC, JUN, TP53, and EGFR as the top five key targets for YYD against NSCLC. Through enrichment analysis, YYD was found to affect cell proliferation and apoptosis in NSCLC possibly by PI3K-AKT signaling. Molecular docking confirmed a strong binding between the main compounds (quercetin or luteolin) and EGFR. As demonstrated by CCK-8, EdU, and colony formation assays, we found a significant inhibition of YYD on cell proliferation. Moreover, YYD treatment induced cell cycle arrest by affecting p53, p21, and cyclin D1 expression. YYD administration enhanced apoptosis by changing the expression of cleaved caspase-3, Bax, and Bcl-2. Mechanistically, YYD resulted in a significant inactivation of EGFR-PI3K-AKT signaling. Furthermore, EGFR activator significantly reversed YYD-mediated proliferation inhibition and apoptosis. YYD also showed an inhibitory effect on tumor growth in mice. Together, YYD might target the EGFR-PI3K-AKT pathway to repress NSCLC progression.


Assuntos
Produtos Biológicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Camundongos , Simulação de Acoplamento Molecular , Farmacologia em Rede , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Receptores ErbB
3.
J Cancer Res Ther ; 14(Supplement): S942-S947, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30539827

RESUMO

AIM OF THE STUDY: Garcinia hanburyi is a traditional herbal medicine with activities of anti-inflammation and hemostasis used by people in South Asia. Gambogic acid (GA) is the main active component extracted from it, which has anticancer and anti-inflammatory effects. The aim of the current study is to investigate the molecular mechanisms of GA's effective anticancer activity. MATERIALS AND METHODS: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was used to measure cell proliferation. Apoptosis induced by GA was analyzed by flow cytometry. In addition, monodansylcadaverine (MDC) and 2',7'-dichlorofluorescein diacetate were used to evaluate autophagy and reactive oxygen species (ROS) generation, respectively. RESULTS: GA could significantly inhibit nonsmall cell lung cancer (NSCLC) NCI-H441 cell growth. In addition, GA induced NCI-H441 cells autophagy, confirmed by MDC staining, upregulation of Beclin 1 (initiation factor for autophagosome formation), and conversion of LC3 I to LC3 II (autophagosome marker). Moreover, generated ROS was induced by GA in NCI-H441 cells and the ROS scavenger N-acetylcysteine reversed GA-induced autophagy and restored the cell survival, which indicated GA-induced autophagy in NCI-H441 cells through an ROS-dependent pathway. In addition, in vivo results further indicated that GA significantly inhibited the growth of NCI-H441 xenografts. CONCLUSIONS: The results shed new light on the interaction between ROS generation and autophagy in NSCLC cells and provide theoretical support for the usage of GA in clinical treatment.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Autofagia/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Xantonas/farmacologia , Acetilcisteína/farmacologia , Animais , Antineoplásicos Fitogênicos/uso terapêutico , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Garcinia/química , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Transdução de Sinais/efeitos dos fármacos , Xantonas/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA