Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 7088, 2024 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-38528143

RESUMO

Osteoporosis (OP) is a prevalent global disease characterized by bone mass loss and microstructural destruction, resulting in increased bone fragility and fracture susceptibility. Our study aims to investigate the potential of kaempferol in preventing and treating OP through a combination of network pharmacology and molecular experiments. Kaempferol and OP-related targets were retrieved from the public database. A protein-protein interaction (PPI) network of common targets was constructed using the STRING database and visualized with Cytoscape 3.9.1 software. Enrichment analyses for GO and KEGG of potential therapeutic targets were conducted using the Hiplot platform. Molecular docking was performed using Molecular operating environment (MOE) software, and cell experiments were conducted to validate the mechanism of kaempferol in treating OP. Network pharmacology analysis identified 54 overlapping targets between kaempferol and OP, with 10 core targets identified. The primarily enriched pathways included atherosclerosis-related signaling pathways, the AGE/RAGE signaling pathway, and the TNF signaling pathway. Molecular docking results indicated stable binding of kaempferol and two target proteins, AKT1 and MMP9. In vitro cell experiments demonstrated significant upregulation of AKT1 expression in MC3T3-E1 cells (p < 0.001) with kaempferol treatment, along with downregulation of MMP9 expression (p < 0.05) compared to the control group. This study predicted the core targets and pathways of kaempferol in OP treatment using network pharmacology, and validated these findings through in vitro experiments, suggesting a promising avenue for future clinical treatment of OP.


Assuntos
Doenças Ósseas Metabólicas , Medicamentos de Ervas Chinesas , Osteoporose , Humanos , Metaloproteinase 9 da Matriz , Quempferóis/farmacologia , Simulação de Acoplamento Molecular , Farmacologia em Rede , Osteoporose/tratamento farmacológico
2.
BMC Complement Altern Med ; 15: 389, 2015 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-26508316

RESUMO

BACKGROUND: Liver fibrosis is a feature in the majority of chronic liver diseases and oxidative stress is considered to be its main pathogenic mechanism. Antioxidants including vitamin E, are effective in preventing liver fibrogenesis. Several plant-drived antioxidants, such as silymarin, baicalin, beicalein, quercetin, apigenin, were shown to interfere with liver fibrogenesis. The antioxidans above are polyphenols, flavonoids or structurally related compounds which are the main chemical components of Pomegranate peels and seeds, and the antioxidant activity of Pomegranate peels and seeds have been verified. Here we investigated whether the extracts of pomegranate peels (EPP) and seeds (EPS) have preventive efficacy on liver fibrosis induced by carbon tetrachloride (CCl4) in rats and explored its possible mechanisms. METHODS: The animal model was established by injection with 50 % CCl4 subcutaneously in male wistar rats twice a week for four weeks. Meanwhile, EPP and EPS were administered orally every day for 4 weeks, respectively. The protective effects of EPP and EPS on biochemical metabolic parameters, liver function, oxidative markers, activities of antioxidant enzymes and liver fibrosis were determined in CCl4-induced liver toxicity in rats. RESULTS: Compared with the sham group, the liver function was worse in CCl4 group, manifested as increased levels of serum alanine aminotransferase, aspartate aminotransferase and total bilirubin. EPP and EPS treatment significantly ameliorated these effects of CCl4. EPP and EPS attenuated CCl4-induced increase in the levels of TGF-ß1, hydroxyproline, hyaluronic acid laminin and procollagen type III. They also restored the decreased superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) activities and inhibited the formation of lipid peroxidized products in rats treated with CCl4. CONCLUSION: The EPP and EPS have protective effects against liver fibrosis induced by CCl4, and its mechanisms might be associated with their antioxidant activity, the ability of decreasing the level of TGF-ß1 and inhibition of collagen synthesis.


Assuntos
Cirrose Hepática/prevenção & controle , Fígado/efeitos dos fármacos , Lythraceae/química , Extratos Vegetais/farmacologia , Animais , Biomarcadores/metabolismo , Tetracloreto de Carbono , Modelos Animais de Doenças , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Testes de Função Hepática , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Sementes/química , Baço/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA