Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anim Nutr ; 16: 202-217, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38362511

RESUMO

Bacterial pathogens destroy the structural integrity of functional organs in fish, leading to severe challenges in the aquaculture industry. Vitamin D3 (VD3) prevents bacterial infections and strengthens immune system function via vitamin D receptor (VDR). However, the correlation between VD3/VDR and the structural integrity of functional organs remains unclarified. This study aimed to investigate the influence of VD3 supplementation on histological characteristics, apoptosis, and tight junction characteristics in fish intestine during pathogen infection. A total of 540 healthy grass carp (257.24 ± 0.63 g) were fed different levels of VD3 (15.2, 364.3, 782.5, 1,167.9, 1,573.8, and 1,980.1 IU/kg) for 70 d. Subsequently, fish were challenged with Aeromonas hydrophila, a pathogen that causes intestinal inflammation. Our present study demonstrated that optimal supplementation with VD3 (1) alleviated intestinal structural damage, and inhibited oxidative damage by reducing levels of oxidative stress biomarkers; (2) attenuated excessive apoptosis-related death receptor and mitochondrial pathway processes in relation to p38 mitogen-activated protein kinase signaling (P < 0.05); (3) enhanced tight junction protein expression by inhibiting myosin light chain kinase signaling (P < 0.05); and (4) elevated VDR isoform expression in fish intestine (P < 0.05). Overall, the results demonstrated that VD3 alleviates oxidative injury, apoptosis, and the destruction of tight junction protein under pathogenic infection, thereby strengthening pathogen defenses in the intestine. This finding supports the rationale for VD3 intervention as an essential practice in sustainable aquaculture.

2.
J Agric Food Chem ; 72(9): 4977-4990, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38386875

RESUMO

Ochratoxin A (OTA) is a common mycotoxin in food and feed that seriously harms human and animal health. This study investigated the effect of OTA on the muscle growth of juvenile grass carp (Ctenopharyngodon idella) and its possible mechanism in vitro. Our results have the following innovative findings: (1) Dietary OTA increased the expression of increasing phase I metabolic enzymes and absorbing transporters while reducing the expression of efflux transporters, thereby increasing their residue in muscles; (2) OTA inhibited the expressions of cell cycle and myogenic regulatory factors (MyoD, MyoG, and MyHC) and induced ferroptosis by decreasing the mRNA and protein expressions of FTH, TFR1, GPX4, and Nrf2 both in vivo and in vitro; and (3) the addition of DFO improved OTA-induced ferroptosis of grass carp primary myoblasts and promoted cell proliferation, while the addition of AKT improved OTA-inhibited myoblast differentiation and fusion, thus inhibiting muscle growth. Overall, this study provides a potential research target to further mitigate the myotoxicity of OTA.


Assuntos
Carpas , Ferroptose , Doenças dos Peixes , Ocratoxinas , Animais , Humanos , Suplementos Nutricionais , Imunidade Inata , Transdução de Sinais , Carpas/genética , Carpas/metabolismo , Dieta , Músculos/metabolismo , Ração Animal/análise , Proteínas de Peixes/metabolismo
3.
Anim Nutr ; 15: 22-33, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37771856

RESUMO

Copper (Cu) is a trace element, essential for fish growth. In the current study, in addition to growth performance, we first explored the effects of Cu on collagen synthesis and myofiber growth and development in juvenile grass carp (Ctenopharyngodon idella). A total of 1080 fish (11.16 ± 0.01 g) were randomly divided into 6 treatments (3 replicates per treatment) to receive five doses of organic Cu, which were Cu citrate (CuCit) at 0.99 (basal diet), 2.19, 4.06, 6.15, and 8.07 mg/kg, and one dose of inorganic Cu (CuSO4·5H2O at 3.15 mg/kg), for 9 weeks. The results showed appropriate Cu level (4.06 mg/kg) enhanced growth performance, improved nutritional Cu status, and downregulated Cu-transporting ATPase 1 mRNA levels in the hepatopancreas, intestine, and muscle of juvenile grass carp. Meanwhile, collagen content in fish muscle was increased after Cu intake, which was probably due to the following pathways: (1) activating CTGF/TGF-ß1/Smads signaling pathway to regulate collagen transcription; (2) upregulating of La ribonucleoprotein domain family 6 (LARP6) mRNA levels to regulate translation initiation; (3) increasing proline hydroxylase, lysine hydroxylase, and lysine oxidase activities to regulate posttranslational modifications. In addition, optimal Cu group increased myofiber diameters and the frequency of myofibers with diameter >50 µm, which might be associated with upregulation of cyclin B, cyclin D, cyclin E, proliferating cell nuclear antigen, myogenic determining factor (MyoD), myogenic factor 5, myogenin (MyoG), myogenic regulatory factor 4 and myosin heavy chain (MyHC) and downregulation of myostatin mRNA levels, increasing protein levels of MyoD, MyoG and MyHC in fish muscle. Finally, based on percentage weight gain (PWG), serum ceruloplasmin (Cp) activity and collagen content in fish muscle, Cu requirements were determined as 4.74, 4.37 and 4.62 mg/kg diet (CuCit as Cu source) of juvenile grass carp, respectively. Based on PWG and Cp activity, compared to CuSO4·5H2O, the efficacy of CuCit were 131.80% and 115.38%, respectively. Our findings provide new insights into Cu supplementation to promote muscle growth in fish, and help improve the overall productivity of aquaculture.

4.
Int J Mol Sci ; 24(14)2023 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-37511003

RESUMO

The vertebrate mucosal barrier comprises physical and immune elements, as well as bioactive molecules, that protect organisms from pathogens. Vitamin D is a vital nutrient for animals and is involved in immune responses against invading pathogens. However, the effect of vitamin D on the mucosal barrier system of fish, particularly in the skin, remains unclear. Here, we elucidated the effect of vitamin D supplementation (15.2, 364.3, 782.5, 1167.9, 1573.8, and 1980.1 IU/kg) on the mucosal barrier system in the skin of grass carp (Ctenopharyngodon idella) challenged with Aeromonas hydrophila. Dietary vitamin D supplementation (1) alleviated A. hydrophila-induced skin lesions and inhibited oxidative damage by reducing levels of reactive oxygen species, malondialdehyde, and protein carbonyl; (2) improved the activities and transcription levels of antioxidant-related parameters and nuclear factor erythroid 2-related factor 2 signaling; (3) attenuated cell apoptosis by decreasing the mRNA and protein levels of apoptosis factors involved death receptor and mitochondrial pathway processes related to p38 mitogen-activated protein kinase and c-Jun N-terminal kinase signaling; (4) improved tight junction protein expression by inhibiting myosin light-chain kinase signaling; and (5) enhanced immune barrier function by promoting antibacterial compound and immunoglobulin production, downregulating pro-inflammatory cytokine expression, and upregulating anti-inflammatory cytokines expression, which was correlated with nuclear factor kappa B and the target of rapamycin signaling pathways. Vitamin D intervention for mucosal barrier via multiple signaling correlated with vitamin D receptor a. Overall, these results indicate that vitamin D supplementation enhanced the skin mucosal barrier system against pathogen infection, improving the physical and immune barriers in fish. This finding highlights the viability of vitamin D in supporting sustainable aquaculture.


Assuntos
Carpas , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Animais , Dieta , Aeromonas hydrophila/fisiologia , Imunidade Inata , Vitamina D/farmacologia , Proteínas de Peixes/genética , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Infecções por Bactérias Gram-Negativas/veterinária , Vitaminas/farmacologia , Carpas/metabolismo , Ração Animal/análise , Suplementos Nutricionais
5.
J Sci Food Agric ; 103(3): 1172-1182, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36085562

RESUMO

BACKGROUND: Deterioration of flesh quality has bad effects on consumer satisfaction. Therefore, effects of safe mannan-oligosaccharides (MOS) on flesh quality of grass carp (Ctenopharyngodon idella) muscle were studied. A total of 540 healthy fish (215.85 ± 0.30 g) were randomly divided into six groups and fed six separate diets with graded levels of MOS (0, 200, 400, 600, 800 and 1000 mg kg-1 ) for 60 days. This study aimed at investigating the benefits of dietary MOS on flesh quality (fatty acids, amino acids and physicochemical properties) and the protection mechanism regarding antioxidant status. RESULTS: Optimal MOS could improve tenderness (27.4%), pH (5.5%) while decreasing cooking loss (16.6%) to enhance flesh quality. Meanwhile, optimal MOS improved flavor inosine 5'-monophosphate (IMP) of 11.8%, sweetness and umami-associated amino acid, healthy unsaturated fatty acid (UFA) of 14.9% and n-3 polyunsaturated fatty acids (n-3 PUFAs) especially C20:5n-3 (15.8%) and C22:6n-3 (38.3%). Furthermore, the mechanism that MOS affected pH, tenderness and cooking loss could be partly explained by the reduced lactate, cathepsin and oxidation, respectively. The enhanced flesh quality was also associated with enhanced antioxidant ability concerning improving antioxidant enzymes activities and the corresponding transcriptional levels, which were regulated through NF-E2-related factor 2 (Nrf2) and target of rapamycin (TOR) signaling. Based on pH24h , cooking loss, shear force and DHA (docosahexaenoic acid, C22:6n-3), optimal MOS levels for grass carp were estimated to be 442.75, 539.53, 594.73 and 539.53 mg kg-1 , respectively. CONCLUSION: Dietary MOS is a promising alternative strategy to improve flesh quality of fish muscle. © 2022 Society of Chemical Industry.


Assuntos
Carpas , Doenças dos Peixes , Animais , Aminoácidos , Ração Animal/análise , Antioxidantes/metabolismo , Carpas/metabolismo , Dieta , Suplementos Nutricionais , Proteínas de Peixes/metabolismo , Mananas
6.
Anim Nutr ; 10: 305-318, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35891684

RESUMO

Vitamin D3 (VD3), an essential nutrient for animals, has been demonstrated to stimulate the uptake of certain amino acids. However, the role of VD3 in the intestine, the primary site for digestion and absorption of nutrients, remains poorly characterized. Here, the grass carp (Ctenopharyngodon idella) was studied to assess the influence of different doses of VD3 (15.2, 364.3, 782.5, 1,167.9, 1,573.8, and 1,980.1 IU/kg) on growth performance, intestinal morphology, digestive absorption, amino acid transport, and potential signaling molecule levels in a feeding experiment. As a result, dietary VD3 improved growth performance, intestinal structure, and digestive and brush border enzyme activities. Additionally, most intestinal free amino acids and their transporters were upregulated after VD3 intake, except for Ala, Lys, Asp, Leu, solute carrier (SLC) 7A7, SLC1A5, and SLC1A3 mRNA in different segments, Leu and SLC6A14 mRNA in the proximal intestine, and SLC7A5 mRNA in the mid and distal intestine. In the crucial target of rapamycin (TOR) signal pathway of amino acid transport, the gene and protein expression of TOR, S6 kinase 1, and activating transcription factor 4 were elevated, whereas 4E-binding protein 1 was decreased, further suggesting an advanced amino acid absorption capacity in the fish due to VD3 supplementation. Based on percentage weight gain, feed efficiency, and trypsin activity, the VD3 requirements of on-growing grass carp were estimated to be 968.33, 1,005.00, and 1,166.67 IU/kg, respectively. Our findings provide novel recommendations for VD3 supplementation to promote digestion and absorption capacities of fish, contributing to the overall productivity of aquaculture.

7.
Life Sci ; 298: 120458, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35248525

RESUMO

AIMS: Lysine-specific demethylase 5B (KDM5B) is an epigenetic regulator of chromatin that catalyzes the demethylation of histone 3 lysine 4. It is overexpressed in multiple cancer types and acts as a therapeutic target in cancer therapy. Nevertheless, its upstream regulatory pathway is not completely understood, prompting the search for the underlying biological factors driving KDM5B overexpression. MATERIALS AND METHODS: A comprehensive analysis was performed to examine the association between KDM5B overexpression and copy number variation (CNV), somatic mutation, mRNA expression, miRNA expression, and clinical characters from The Cancer Genome Atlas database. Coexpression and function enrichment analyses were performed with KDM5B-coexpressed genes. The gastric cancer (GC) cell line MKN45 was utilized to verify the regulation of KDM5B using the transcription factor (TF) Yin Yang 1 (YY1) and miR-29a-3p. KEY FINDINGS: KDM5B was overexpressed and associated with poor prognosis in GC. KDM5B upregulation was driven by CNV amplification and DNA hypomethylation rather than by KDM5B mutations. Enrichment analysis revealed that KDM5B-coexpressed genes were primarily related to the transmembrane transport function and the ubiquitin-mediated proteolysis signaling pathway. As a TF, YY1 might bind to the KDM5B promoter region to regulate KDM5B expression. In addition, miR-29a-3p might bind to and negatively regulate KDM5B expression. SIGNIFICANCE: Our results demonstrate that KDM5B expression is regulated via CNV amplification, DNA hypomethylation, and YY1 and miR-29a-3p; KDM5B expression regulation is associated with patient survival and tumor cell proliferation.


Assuntos
MicroRNAs , Neoplasias Gástricas , Linhagem Celular Tumoral , Proliferação de Células/genética , DNA , Variações do Número de Cópias de DNA/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Lisina/metabolismo , MicroRNAs/genética , Proteínas Nucleares/genética , Proteínas Repressoras/genética , Neoplasias Gástricas/genética
8.
J Ethnopharmacol ; 172: 108-17, 2015 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-26117533

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Simiao pill is one of the most frequently prescriptions in traditional Chinese medicine to treat hyperuricemia and gout. This study was to investigate the protective effects of Simiao pill on renal glomerular injury in a rat model of high fructose intake. MATERIALS AND METHODS: Sprague-Dawley male rats were given 10% fructose in drinking water and standard laboratory chow for 4 weeks to induce hyperuricemia and metabolic syndrome. Then fructose-fed animals were randomly divided into four groups receiving water, Simiao pill (78.87 and 157.74 mg/kg) and allopurinol (5mg/kg) daily for next 6 weeks, respectively. Serum levels of uric acid, creatinine, triglyceride, total cholesterol, low density lipoprotein, blood urea nitrogen, insulin, as well as urinary albumin were measured. Oral glucose tolerance test (OGTT) was carried out. Kidney pathological changes were detected using periodic-acid schiff-stained (PAS) staining and transmission electron microscopy (TEM) analysis. Glomerular protein levels of nephrin, podocin, CD2-associated protein (CD2AP), interleukin (IL)-1ß, sirtuin 1 (Sirt1), nuclear factor kappaB (NF-κB) and pyrin domain containing 3 (NLRP3) inflammasome were measured by Western blot. RESULTS: Simiao pill effectively restored high fructose-induced hyperuricemia and metabolic syndrome in rats. Simiao pill significantly increased protein levels of nephrin, podocin and CD2AP in renal glomeruli, improved renal inflammatory cell infiltration into interstitium and glomerular injury in high fructose-fed rats with reduction of urine albumin levels. Furthermore, Simiao pill up-regulated Sirt1 protein levels and suppressed NF-κB/NLRP3 inflammasome activation to reduce IL-1ß in renal glomeruli of high fructose-fed rats. CONCLUSIONS: The renal protective effects of Simiao pill may be associated with up-regulation of Sirt1 expression and suppression of NF-κB/NLRP3 inflammasome activation to reduce renal glomerular injury in high fructose-fed rats with metabolic syndrome.


Assuntos
Proteínas de Transporte/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Frutose/administração & dosagem , Hiperuricemia/tratamento farmacológico , Inflamassomos/efeitos dos fármacos , NF-kappa B/metabolismo , Sirtuína 1/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Albuminúria/complicações , Albuminúria/tratamento farmacológico , Animais , Proteínas de Transporte/antagonistas & inibidores , Proteínas do Citoesqueleto/metabolismo , Relação Dose-Resposta a Droga , Medicamentos de Ervas Chinesas/uso terapêutico , Frutose/farmacologia , Hiperuricemia/induzido quimicamente , Hiperuricemia/complicações , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Glomérulos Renais/efeitos dos fármacos , Glomérulos Renais/patologia , Masculino , Proteínas de Membrana/metabolismo , NF-kappa B/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA