Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Chim Acta ; 1293: 342200, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331549

RESUMO

Adenosine triphosphate (ATP) is regarded as the "energy currency" in living cells, so real-time quantification of content variation of intracellular ATP is highly desired for understanding some important physiological processes. Due to its single-molecule readout ability, nanopipette sensing has emerged as a powerful technique for molecular sensing. In this study, based on the effect of targeting-aptamer binding on ionic current, and fluorescence resonance energy transfer (FRET), we reported a dual-signal readout nanopipette sensing system for monitoring ATP content variation at the subcellular level. In the presence of ATP, the complementary DNA-modified gold nanoparticles (cDNAs-AuNPs) were released from the inner wall of the nanopipette, which leads to sensitive response variations in ionic current rectification and fluorescence intensity. The developed nanopipette sensor was capable of detecting ATP in single cells, and the fluctuation of ATP content in the differentiation of dental pulp stem cells (DPSCs) was further quantified with this method. The study provides a more reliable nanopipette sensing platform due to the introduction of fluorescence readout signals. Significantly, the study of energy fluctuation during cell differentiation from the perspective of energy metabolism is helpful for differentiation regulation and cell therapy.


Assuntos
Trifosfato de Adenosina , Nanopartículas Metálicas , Trifosfato de Adenosina/química , Ouro/química , Polpa Dentária , Nanopartículas Metálicas/química , Diferenciação Celular , Células-Tronco
2.
Anal Bioanal Chem ; 399(8): 2763-70, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21267713

RESUMO

In this study we have used two fluorescent probes, tetrakis(diisopropylguanidino)-zinc-phthalocyanine (Zn-DIGP) and N-methylmesoporphyrin IX (NMM), to monitor the reassembly of "split" G-quadruplex probes on hybridization with an arbitrary "target" DNA. According to this approach, each split probe is designed to contain half of a G-quadruplex-forming sequence fused to a variable sequence that is complementary to the target DNA. Upon mixing the individual components, both base-pairing interactions and G-quadruplex fragment reassembly result in a duplex-quadruplex three-way junction that can bind to fluorescent dyes in a G-quadruplex-specific way. The overall fluorescence intensities of the resulting complexes were dependent on the formation of proper base-pairing interactions in the duplex regions, and on the exact identity of the fluorescent probe. Compared with samples lacking any "target" DNA, the fluorescence intensities of Zn-DIGP-containing samples were lower, and the fluorescence intensities of NMM-containing samples were higher on addition of the target DNA. The resulting biosensors based on Zn-DIGP are therefore termed "turn-off" whereas the biosensors containing NMM are defined as "turn-on". Both of these biosensors can detect target DNAs with a limit of detection in the nanomolar range, and can discriminate mismatched from perfectly matched target DNAs. In contrast with previous biosensors based on the peroxidase activity of heme-bound split G-quadruplex probes, the use of fluorescent dyes eliminates the need for unstable sensing components (H(2)O(2), hemin, and ABTS). Our approach is direct, easy to conduct, and fully compatible with the detection of specific DNA sequences in biological fluids. Having two different types of probe was highly valuable in the context of applied studies, because Zn-DIGP was found to be compatible with samples containing both serum and urine whereas NMM was compatible with urine, but not with serum-containing samples.


Assuntos
DNA Viral/química , Quadruplex G , DNA Viral/genética , Fluorescência , Corantes Fluorescentes/química , Vírus da Hepatite B/química , Vírus da Hepatite B/genética , Coloração e Rotulagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA