Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Curr Biol ; 34(2): 389-402.e5, 2024 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-38215742

RESUMO

Aversive stimuli activate corticotropin-releasing factor (CRF)-expressing neurons in the paraventricular nucleus of hypothalamus (PVNCRF neurons) and other brain stress systems to facilitate avoidance behaviors. Appetitive stimuli also engage the brain stress systems, but their contributions to reward-related behaviors are less well understood. Here, we show that mice work vigorously to optically activate PVNCRF neurons in an operant chamber, indicating a reinforcing nature of these neurons. The reinforcing property of these neurons is not mediated by activation of the hypothalamic-pituitary-adrenal (HPA) axis. We found that PVNCRF neurons send direct projections to the ventral tegmental area (VTA), and selective activation of these projections induced robust self-stimulation behaviors, without activation of the HPA axis. Similar to the PVNCRF cell bodies, self-stimulation of PVNCRF-VTA projection was dramatically attenuated by systemic pretreatment of CRF receptor 1 or dopamine D1 receptor (D1R) antagonist and augmented by corticosterone synthesis inhibitor metyrapone, but not altered by dopamine D2 receptor (D2R) antagonist. Furthermore, we found that activation of PVNCRF-VTA projections increased c-Fos expression in the VTA dopamine neurons and rapidly triggered dopamine release in the nucleus accumbens (NAc), and microinfusion of D1R or D2R antagonist into the NAc decreased the self-stimulation of these projections. Together, our findings reveal an unappreciated role of PVNCRF neurons and their VTA projections in driving reward-related behaviors, independent of their core neuroendocrine functions. As activation of PVNCRF neurons is the final common path for many stress systems, our study suggests a novel mechanism underlying the positive reinforcing effect of stressful stimuli.


Assuntos
Hormônio Liberador da Corticotropina , Hormônios Liberadores de Hormônios Hipofisários , Camundongos , Animais , Hormônio Liberador da Corticotropina/metabolismo , Hormônios Liberadores de Hormônios Hipofisários/metabolismo , Hormônios Liberadores de Hormônios Hipofisários/farmacologia , Sistema Hipotálamo-Hipofisário , Sistema Hipófise-Suprarrenal , Hipotálamo/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Neurônios Dopaminérgicos/metabolismo
2.
Fitoterapia ; 101: 99-106, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25596095

RESUMO

Fructus Psoraleae (FP) is an edible Chinese herbal which is widely used in Asia for the treatment of various diseases including asthma, diarrhea, and osteoporosis. This study aimed to investigate the inhibitory effects of the crude ethanol extract from FP on human carboxylesterase 2 (hCE2), as well as to identity and characterize the naturally occurring inhibitors of hCE2 in FP. Our results demonstrated that the ethanol extract of FP displayed potent inhibitory effects towards hCE2, while five major bioactive constitutes in FP were efficiently identified by LC-DAD-ESI-MS/MS, with the aid of LC-based activity profiling. The identified bioactive compounds including neobavaisoflavone, isobavachalcone, bavachinin, corylifol A and bakuchiol were found to be naturally occurring potent inhibitors of hCE2, with low Ki values ranging from 0.62µM to 3.89µM. This is the first report of the chemical constitutes in FP as potent inhibitors of hCE2.


Assuntos
Carboxilesterase/antagonistas & inibidores , Medicamentos de Ervas Chinesas/química , Inibidores Enzimáticos/química , Psoralea/química , Chalconas/química , Chalconas/isolamento & purificação , Inibidores Enzimáticos/isolamento & purificação , Flavonas/química , Flavonas/isolamento & purificação , Flavonoides/química , Flavonoides/isolamento & purificação , Frutas/química , Humanos , Isoflavonas/química , Isoflavonas/isolamento & purificação , Fenóis/química , Fenóis/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA