Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Chin Med ; 51(4): 997-1018, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37046368

RESUMO

Diabetic nephropathy (DN) is thought to be the major cause of end-stage renal disease. Due to its complicated pathogenesis and the low efficacy of DN treatment, a deep understanding of new etiological factors may be useful. Ferroptosis, a nonapoptotic form of cell death, is characterized by the accumulation of iron-dependent lipid peroxides to lethal levels. Ferroptosis-triggered renal tubular injury is reported to participate in the development of DN, and blocking ferroptosis might be an effective strategy to prevent the development of DN. Quercetin (QCT), a natural flavonoid that is present in a variety of fruits and vegetables, has been reported to ameliorate DN. However, its underlying nephroprotective mechanism is unclear. Herein, we explored the antiferroptosic effect of QCT and verified its nephroprotective effect using DN mice and high glucose (HG)-incubated renal tubular epithelial cell models. We found HG-induced abnormal activation of ferroptosis of renal tubular epithelial cells, and QCT treatment inhibited ferroptosis by downregulating the expression of transferrin receptor 1 (TFR-1) and upregulating the expression of glutathione peroxidase 4 (GPX4), ferritin heavy chain 1 (FTH-1), and the cystine/glutamate reverse antiporter solute carrier family 7 member (SLC7A11) in DN mice and HG-incubated HK-2 cells. Subsequently, both in vitro and in vivo results confirmed that QCT activated the NFE2-related factor 2 (Nrf2)/Heme oxygenase-1(HO-1) signaling pathway by increasing the levels of Nrf2 and HO-1. Therefore, this study supports that QCT inhibits the ferroptosis of renal tubular epithelial cells by regulating the Nrf2/HO-1 signaling pathway, providing a novel insight into the protective mechanism of QCT in DN treatment.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Ferroptose , Animais , Camundongos , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/etiologia , Quercetina/farmacologia , Quercetina/uso terapêutico , Fator 2 Relacionado a NF-E2 , Transdução de Sinais
2.
J Pharm Pharmacol ; 72(12): 1865-1878, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32750744

RESUMO

OBJECTIVES: Isobavachin is a phenolic with anti-osteoporosis activity. This study aimed to explore its metabolic fates in vivo and in vitro, and to investigate the potential drug-drug interactions involving CYPs and UGTs. METHODS: Metabolites of isobavachin in mice were first identified and characterized. Oxidation and glucuronidation study were performed using liver and intestine microsomes. Reaction phenotyping, activity correlation analysis and relative activity factor approaches were employed to identify the main CYPs and UGTs involved in isobavachin metabolism. Through kinetic modelling, inhibition mechanisms towards CYPs and UGTs were also explored. KEY FINDINGS: Two glucuronides (G1 - G2) and three oxidated metabolites (M1 - M3) were identified in mice. Additionally, isobavachin underwent efficient oxidation and glucuronidation by human liver microsomes and HIM with CLint values from 5.53 to 148.79 µl/min per mg. CYP1A2, 2C19 contributed 11.3% and 17.1% to hepatic metabolism of isobavachin, respectively, with CLint values from 8.75 to 77.33 µl/min per mg. UGT1As displayed CLint values from 10.73 to 202.62 µl/min per mg for glucuronidation. Besides, significant correlation analysis also proved that CYP1A2, 2C19 and UGT1A1, 1A9 were main contributors for the metabolism of isobavachin. Furthermore, mice may be the appropriate animal model for predicting its metabolism in human. Moreover, isobavachin exhibited broad inhibition against CYP2B6, 2C9, 2C19, UGT1A1, 1A9, 2B7 with Ki values from 0.05 to 3.05 µm. CONCLUSIONS: CYP1A2, 2C19 and UGT1As play an important role in isobavachin metabolism. Isobavachin demonstrated broad-spectrum inhibition of CYPs and UGTs.


Assuntos
Inibidores Enzimáticos/farmacologia , Flavonoides/farmacologia , Glucuronosiltransferase/antagonistas & inibidores , Extratos Vegetais/farmacologia , Psoralea , Animais , Inibidores das Enzimas do Citocromo P-450/isolamento & purificação , Inibidores das Enzimas do Citocromo P-450/metabolismo , Inibidores das Enzimas do Citocromo P-450/farmacologia , Inibidores Enzimáticos/isolamento & purificação , Inibidores Enzimáticos/metabolismo , Flavonoides/isolamento & purificação , Flavonoides/metabolismo , Glucuronídeos/metabolismo , Glucuronosiltransferase/metabolismo , Humanos , Isoenzimas , Cinética , Masculino , Desintoxicação Metabólica Fase I , Desintoxicação Metabólica Fase II , Camundongos , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/enzimologia , Oxirredução , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/metabolismo , Psoralea/química , Especificidade da Espécie
3.
Eur J Pharmacol ; 766: 91-8, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26420356

RESUMO

Recent studies uncovered that glutamate accumulation following cerebral ischemia-reperfusion (I/R) was related to the dysfunction of miR-107/glutamate transporter-1(GLT-1) pathway and magnesium lithospermate B (MLB) possesses the pharmacological activity of anti-excitotoxicity. This study aims to explore whether MLB is able to protect rat brain from excitatory neurotoxicity during I/R by modulating miR-107/GLT-1 pathway. Rats were subjected to 2h of cerebral ischemia following by 24h of reperfusion to establish an I/R injury model, which showed an increase in neurological deficit score, infarct volume and cellular apoptosis concomitant with glutamate accumulation, miR-107 elevation and GLT-1 down-regulation. Administration of MLB reduced I/R-induced cerebral injury accompanied by a reverse in glutamate accumulation, miR-107 and GLT-1 expression. Next, we examined the association of MLB with miR-107/GLT-1 pathway in a nerve cell hypoxia/reoxygenation (H/R) injury model. H/R treatment increased the nerve cells apoptosis concomitant with glutamate accumulation and miR-107 elevation, and suppressed GLT-1 expression, mimicking our in vivo findings. All these effects were reversed in the presence of MLB, confirming a strong correlation between MLB and miR-107/GLT-1 pathway. Based on these observations, we conclude that MLB is able to protect the rat brain from excitatory neurotoxicity during I/R through the regulation of miR-107/GLT-1 pathway.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Transportador 2 de Aminoácido Excitatório/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , MicroRNAs/metabolismo , Fármacos Neuroprotetores/farmacologia , Traumatismo por Reperfusão/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Linhagem Celular , Medicamentos de Ervas Chinesas/uso terapêutico , Transportador 2 de Aminoácido Excitatório/genética , Ácido Glutâmico/metabolismo , Hipóxia/tratamento farmacológico , Hipóxia/metabolismo , Hipóxia/patologia , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/patologia , Masculino , Neurônios/efeitos dos fármacos , Neurônios/patologia , Fármacos Neuroprotetores/uso terapêutico , Ratos Sprague-Dawley , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia
4.
Planta Med ; 81(15): 1361-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26252829

RESUMO

Salviaolate is a group of depside salts isolated from Danshen (a traditional Chinese herbal medicine), with ≥ 85 % of magnesium lithospermate B. This study aims to investigate whether salviaolate is able to protect the rat brain from ischemia/reperfusion injury and the underlying mechanisms. Rats were subjected to 2 h of cerebral ischemia and 24 h of reperfusion to establish an ischemia/reperfusion injury model. The neuroprotective effects of salviaolate at different dosages were evaluated. A dosage (25 mg/kg) was chosen to explore the neuroprotective mechanisms of salviaolate. Neurological function, infarct volume, cellular apoptosis, nicotinamide adenine dinucleotide phosphate-oxidase activity, and H2O2 content were measured. In a nerve cell model of hypoxia/reoxygenation injury, magnesium lithospermate B was applied. Cellular apoptosis, lactate dehydrogenase, nicotinamide adenine dinucleotide phosphate-oxidase activity, and H2O2 content were examined. Ischemia/reperfusion treatment significantly increased the neurological deficit score, infarct volume, and cellular apoptosis accompanied by the elevated nicotinamide adenine dinucleotide phosphate-oxidase activity and H2O2 content in the rat brains. Administration of salviaolate reduced ischemia/reperfusion-induced cerebral injury in a dose-dependent manner concomitant with a decrease in nicotinamide adenine dinucleotide phosphate-oxidase activity and H2O2 production. Magnesium lithospermate B (20 mg/kg) and edaravone (6 mg/kg, the positive control) achieved the same beneficial effects as salviaolate did. In the cell experiments, the injury (indicated by apoptosis ratio and lactate dehydrogenase release), nicotinamide adenine dinucleotide phosphate-oxidase activity and H2O2 content were dramatically increased following hypoxia/reoxygenation, which were attenuated in the presence of magnesium lithospermate B (10(-5) M), VAS2870 (nicotinamide adenine dinucleotide phosphate-oxidase inhibitor), or edaravone (10(-5) M). The results suggest that salviaolate is able to protect the brain from ischemia/reperfusion oxidative injury, which is related to the inhibition of nicotinamide adenine dinucleotide phosphate-oxidase and a reduction of reactive oxygen species production.


Assuntos
Benzofuranos/uso terapêutico , Isquemia Encefálica/prevenção & controle , Cinamatos/uso terapêutico , Depsídeos/uso terapêutico , Medicamentos de Ervas Chinesas/uso terapêutico , NADPH Oxidases/antagonistas & inibidores , Fármacos Neuroprotetores/uso terapêutico , Traumatismo por Reperfusão/prevenção & controle , Salvia miltiorrhiza/química , Animais , Antioxidantes/uso terapêutico , Benzoxazóis/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Células Cultivadas , China , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/química , Masculino , Ratos , Ratos Sprague-Dawley , Triazóis/farmacologia , Ácido Rosmarínico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA