Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de estudo
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Physiol Plant ; 176(2): e14205, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38439620

RESUMO

Rhizobia and arbuscular mycorrhizal fungi (AMF) are symbiotic microorganisms important for plants grown in nutrient-deficient and heavy metal-contaminated soils. However, it remains unclear how plants respond to the coupled stress by heavy metal and nitrogen (N) deficiency under co-inoculation. Here, we investigated the synergistic effect of Mesorhizobium huakuii QD9 and Funneliformis mosseae on the response of black locust (Robinia pseudoacacia L.) grown in sand culture to cadmium (Cd) under N deficiency conditions. The results showed that single inoculation of AMF improved the growth and Cd resistance of black locust, co-inoculation improved the most. Compared to non-inoculated controls, co-inoculation mediated higher biomass and antioxidant enzyme activity, reduced oxidative stress, and promoted nodulation, mycorrhizal colonization, photosynthetic capacity, and N, P, Fe and Mg acquisition when exposed to Cd. This increase was significantly higher under N deficiency compared to N sufficiency. In addition, the uptake of Cd by co-inoculated black locust roots increased, but Cd translocation to the above-ground decreased under both N deficiency and sufficiency. Thus, in the tripartite symbiotic system, not merely metabolic processes but also Cd uptake increased under N deficiency. However, enhanced Cd detoxification in the roots and reduced allocation to the shoot likely prevent Cd toxicity and rather stimulated growth under these conditions.


Assuntos
Micorrizas , Rhizobium , Robinia , Cádmio/toxicidade , Areia , Antioxidantes
2.
J Hazard Mater ; 467: 133717, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38325100

RESUMO

Nitrogen (N2)-fixing legumes can be used for phytoremediation of toxic heavy metal Mercury (Hg) contaminated soil, but N2-fixation highly relies on phosphorus (P) availability for nodule formation and functioning. Here, we characterized the significance of P deficiency for Hg accumulation and toxicity in woody legume plants. Consequences for foliar and root traits of rhizobia inoculation, Hg exposure (+Hg) and low P (-P) supply, individually and in combination were characterized at both the metabolite and transcriptome levels in seedlings of two Robinia pseudoacacia L. provenances originating from contrasting climate and soil backgrounds, i.e., GS in northwest and the DB in northeast China. Our results reveal that depleted P mitigates the toxicity of Hg at the transcriptional level. In leaves of Robinia depleted P reduced oxidative stress and improved the utilization strategy of C, N and P nutrition; in roots depleted P regulated the expression of genes scavenging oxidative stress and promoting cell membrane synthesis. Rhizobia inoculation significantly improved the performance of both Robinia provenances under individual and combined +Hg and -P by promoting photosynthesis, increasing foliar N and P content and reducing H2O2 and MDA accumulation despite enhanced Hg uptake. DB plants developed more nodules, had higher biomass and accumulated higher Hg amounts than GS plants and thus are suggested as the high potential Robinia provenance for future phytoremediation of Hg contaminated soils with P deficiency.


Assuntos
Fabaceae , Mercúrio , Robinia , Peróxido de Hidrogênio , Mercúrio/toxicidade , Solo , Nitrogênio/química
3.
Environ Pollut ; 345: 123456, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38307241

RESUMO

The role of rhizobia in alleviating cadmium (Cd) stress in woody legumes is still unclear. Therefore, two types of black locust (Robinia pseudoacacia L.) with high and low Cd accumulation abilities were selected from 11 genotypes in China, and the effects of rhizobium (Mesorhizobium huakuii GP1T11) inoculation on the growth, CO2 and H2O gas exchange parameters, Cd accumulation, and the absorption of mineral elements of the high (SX) and low Cd-accumulator (HB) were compared. The results showed that rhizobium-inoculation significantly increased biomass, shoot Cd contents, Cd accumulation, root-to-shoot translocation factor (TF) and the absorption and accumulation of mineral elements in both SX and HB. Rhizobium-inoculation increased chlorophyll a and carotenoid contents, and the intercellular carbon dioxide concentrations in HB plants. Under Cd exposure, the high-accumulator SX exhibited a significant decrease in photosynthetic CO2 fixation (Pn) and an enhanced accumulation of Cd in leaves, but coped with Cd exposure by increasing chlorophyll synthesis, regulating stomatal aperture (Gs), controlling transpiration (Tr), and increasing the absorption and accumulation of mineral elements. In contrast, the low-accumulator HB was more sensitive to Cd exposure despite preferential accumulation of Cd in roots, with decreased chlorophyll and carotenoid contents, but significantly increased root biomass. Compared to the low-accumulator HB, non-inoculated Cd-exposed SX plants had higher chlorophyll contents, and rhizobium-inoculated Cd-exposed SX plants had higher Pn, Tr, and Gs as well as higher levels of P, K, Fe, Ca, Zn, and Cu. In conclusion, the high- and low-Cd-accumulator exhibited different physiological responses to Cd exposure. Overall, rhizobium-inoculation of black locust promoted the growth and heavy metal absorption, providing an effective strategy for the phytoremediation of heavy metal-contaminated soils by this woody legume.


Assuntos
Metais Pesados , Rhizobium , Robinia , Poluentes do Solo , Cádmio/toxicidade , Robinia/fisiologia , Clorofila A , Dióxido de Carbono/análise , Metais Pesados/farmacologia , Clorofila , Minerais , Carotenoides , Biodegradação Ambiental , Poluentes do Solo/análise
4.
Environ Pollut ; 342: 123050, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38042473

RESUMO

Interaction of different environmental constrains pose severe threats to plants that cannot be predicted from individual stress exposure. In this context, mercury (Hg), as a typical toxic and hazardous heavy metal, has recently attracted particular attention. Nitrogen (N2)-fixing legumes can be used for phytoremediation of Hg accumulation, whereas N availability could greatly affect its N2-fixation efficiency. However, information on the physiological responses to combined Hg exposure and excess N supply of woody legume species is still lacking. Here, we investigated the interactive effects of rhizobia inoculation, Hg exposure (+Hg), and high N (+N) supply, individually and in combination (+N*Hg), on photosynthesis and biochemical traits in Robinia pseudoacacia L. seedlings of two provenances, one from Northeast (DB) and one from Northwest (GS) China. Our results showed antagonistic effects of combined + N*Hg exposure compared to the individual treatments that were provenance-specific. Compared to individual Hg exposure, combined + N*Hg stress significantly increased foliar photosynthesis (+50.6%) of inoculated DB seedlings and resulted in more negative (-137.4%) δ15N abundance in the roots. Furthermore, combined + N*Hg stress showed 47.7% increase in amino acid N content, 39.4% increase in NR activity, and 14.8% decrease in MDA content in roots of inoculated GS seedlings. Inoculation with rhizobia significantly promoted Hg uptake in both provenances, reduced MDA contents of leaves and roots, enhanced photosynthesis and maintained the nutrient balance of Robinia. Among the two Robinia provenances investigated, DB seedlings formed more nodules, had higher biomass and Hg accumulation than GS seedlings. For example, total Hg concentrations in leaves and roots and total biomass of inoculated DB seedlings were 1.3,1.9 and 3.4 times higher than in inoculated GS seedlings under combined + N*Hg stress, respectively. Therefore, the DB provenance is considered to possess a higher potential for phytoremediation of Hg contamination compared to the GS provenance in environments subjected to N deposition.


Assuntos
Fabaceae , Mercúrio , Rhizobium , Robinia , Robinia/metabolismo , Simbiose , Mercúrio/toxicidade , Mercúrio/metabolismo , Biodegradação Ambiental , Nitrogênio/metabolismo , Plântula
5.
J Hazard Mater ; 465: 133236, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38141298

RESUMO

Biochar could reshape microbial communities, thereby altering methylmercury (MeHg) concentrations in rice rhizosphere and seeds. However, it remains unclear whether and how biochar amendment perturbs microbe-mediated MeHg production in mercury (Hg) contaminated paddy soil. Here, we used pinecone-derived biochar and its six modified biochars to reveal the disturbance. Results showed that selenium- and chitosan-modified biochar significantly reduced MeHg concentrations in the rhizosphere by 85.83% and 63.90%, thereby decreasing MeHg contents in seeds by 86.37% and 75.50%. The two modified bicohars increased the abundance of putative Hg-resistant microorganisms Bacillus, the dominant microbe in rhizosphere. These reductions about MeHg could be facilitated by biochar sensitive microbes such as Oxalobacteraceae and Subgroup_7. Pinecone-derived biochar increased MeHg concentration in rhizosphere but unimpacted MeHg content in seeds was observed. This biochar decreased the abundance in Bacillus but enhanced in putative Hg methylator Desulfovibrio. The increasing MeHg concentration in rhizosphere could be improved by biochar sensitive microbes such as Saccharimonadales and Clostridia. Network analysis showed that Saccharimonadales and Clostridia were the most prominent keystone taxa in rhizosphere, and the three biochars manipulated abundances of the microbes related to MeHg production in rhizosphere by those biochar sensitive microbes. Therefore, selenium- and chitosan-modified biochar could reduce soil MeHg production by these microorganisms, and is helpful in controlling MeHg contamination in rice.


Assuntos
Carvão Vegetal , Quitosana , Mercúrio , Compostos de Metilmercúrio , Oryza , Selênio , Poluentes do Solo , Compostos de Metilmercúrio/análise , Poluentes do Solo/análise , Mercúrio/análise , Solo
6.
Chemosphere ; 346: 140619, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37944768

RESUMO

Urea is the most frequently used nitrogen (N) fertilizer worldwide. However, the mechanisms in plants to cope with excess urea are largely unknown, especially for woody legumes that can meet their N demand by their own N2-fixation capacity. Here, we studied the immediate consequences of different amounts of urea application and exposure duration on photosynthesis, N metabolism, and the activity of antioxidative enzymes of Robinia pseudoacacia seedlings. For this purpose, seedlings were grown for 3 months under normal N availability with rhizobia inoculation and, subsequently, 50 mg N kg-1 was applied to the soil twice with urea as additional N source. Our results show that excess urea application significantly promoted photosynthesis, which increased by 80.3% and 84.7% compared with CK after the 1st and 2nd urea applications, respectively. The increase in photosynthesis translated into an increase in root and nodule biomass of 88.7% and 82.0%, respectively, while leaf biomass decreased by 4.8% after the first application of urea. The N content in leaves was 92.6% higher than in roots, but excess urea application increased the N content of protein and free amino acids in roots by 25.0%, and 43.3%, respectively. Apparently, enhanced root growth and N storage in the roots constitute mechanisms to prevent the negative consequences of excess N in the shoot upon urea application. Nitrate reductase (NR) activity of leaves and roots increased by 74.4% and 26.3%, respectively. Glutathione reductase (GR) activity in leaves and roots was enhanced by 337% and 34.0%, respectively, but then decreased rapidly to the initial level before fertilization. This result shows that not only N metabolism, but also antioxidative capacity was transiently promoted by excess urea application. Apparently, excess urea application initially poses oxidative stress to the plants that is immediately counteracted by enhanced scavenging of reactive oxygen species via enhanced GR activity.


Assuntos
Robinia , Robinia/metabolismo , Plântula/metabolismo , Fotossíntese , Solo/química , Nitrogênio , Antioxidantes/metabolismo , Raízes de Plantas/metabolismo , Folhas de Planta/metabolismo
7.
Sci Total Environ ; 830: 154815, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35341840

RESUMO

Karst lime soil, commonly found in rocky desert ecosystems of Southwest China, exhibits high pH, poor water retention, and intense erosion. To prevent further soil erosion and soil losses from these ecosystems, stabilization measures based on improved green infrastructure are needed. The present study aimed at elucidating the performance of sweet tea (Lithocarpus polystachyus) seedlings grown on this soil type upon biochar application. Biochar was classified into different particle sizes, viz. 0.25-0.5 mm (medium), 0.5-1 mm (coarse), 1-2 mm (gravel), and their mixture, and added at the concentrations of 1, 2, or 5% soil mass. The pH, moisture, and porosity of soil increased upon biochar application compared to control; however, soil bulk density significantly decreased. The activity of soil phosphatase was increased by biochar particle size. Biochar particle size and concentration significantly enhanced the soil organic carbon content, but they differently affected total and plant-available nutrients in the soil. Light-saturated photosynthesis was positively affected, while stomatal conductance, leaf transpiration, and the intercellular CO2 concentrations of sweet tea leaves were negatively affected by biochar particle size and/or concentration compared to control. Leaf chlorophyll and soluble protein contents were increased by biochar application. From these results, we conclude that biochar can improve soil properties and the performance of sweet tea seedlings grown on Karst lime soil. We suggest its application at a concentration of 2% soil mass for keeping a high physiological performance of sweet tea seedlings in this environment. The selection of the ideal particle size is context-specific and depends on the target outcome.


Assuntos
Plântula , Solo , Compostos de Cálcio , Carbono , Carvão Vegetal/química , Fenômenos Químicos , Ecossistema , Óxidos , Solo/química , Chá
8.
Physiol Plant ; 174(1): e13641, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35112359

RESUMO

The present study explores the interaction of water supply and rhizobia inoculation on CO2 and H2 O gas exchange characteristics, physiological and biochemical traits in seedlings of Robinia pseudoacacia L. originating from two provenances with contrasting climate and soil backgrounds: the Gansu Province (GS) in northwest China and the Dongbei region (DB) of northeast China. Rhizobia strains were isolated from the 50-years old Robinia forest sites grown in the coastal region of east China. Robinia seedlings with and without rhizobia inoculation were exposed to normal water supply, moderate drought, and rewatering treatments, respectively. After 2 weeks of drought treatment, photosynthetic and physiological traits (net photosynthetic rate, stomatal conductance, stable isotope signature of carbon, malondialdehyde and hydrogen peroxide content) of Robinia leaves were significantly altered, but after rewatering, a general recovery was observed. Rhizobia inoculation significantly increased the drought resistance of both Robinia provenances by promoting photosynthesis, increasing the foliar N content and reducing the accumulation of malondialdehyde and hydrogen peroxide. Among the two provenances, DB plants developed more nodules than GS plants, but GS plants were more drought-tolerant than DB plants, both inoculated or noninoculated, indicated by the foliar gas exchange parameters and biochemical traits studied. Our results also show that inoculation of rhizobia could significantly improve the drought resistance of Robinia in both provenances. The present study contributes to the scientific background for the selection of drought-resistant varieties of Robinia to ensure the success of future afforestation projects in degraded terrestrial ecosystems under global climate change.


Assuntos
Rhizobium , Robinia , Desidratação , Ecossistema , Robinia/fisiologia , Estresse Fisiológico , Simbiose
9.
Sci Total Environ ; 688: 333-345, 2019 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-31233915

RESUMO

The Loess Plateau in northwestern China constitutes one of the most vulnerable semi-arid regions in the world due to long-term decline in forest cover, soil nutrient depletion by agricultural use, and attendant soil erosion. Here, we characterize the significance of N2-fixing Robinia pseudoacacia L. and non-N2-fixing Juglans regia L. for improving nutrient availability and water retention in soil by comparing a range of biological and physicochemical features in monoculture and mixed plantations of both species. We found that N2-fixing Robinia facilitates the nitrogen and phosphorus composition of non-N2-fixing Juglans in the mixed stand as a consequence of improved soil nutrient availability, evident as higher levels of nitrogen and labile carbon compared to mono-specific stands. This demonstrates that intercropping N2-fixing Robinia with non-N2-fixing woody plants can greatly improve soil carbon and nitrogen bioavailability as well as whole-plant nutrition and can potentially mediate water retention with additional sequestration of soil organic carbon in the range of 1 t C ha-1 year-1. Thus, intercropping N2-fixing woody species (e.g. Robinia pseudoacacia or Hippophae rhamnoides L.) with locally important non-N2-fixing tree and shrub species should be considered in afforestation strategies for landscape restoration.


Assuntos
Agricultura/métodos , Fixação de Nitrogênio/fisiologia , Robinia/fisiologia , China , Clima Desértico , Ecossistema , Nitrogênio
10.
Tree Physiol ; 38(1): 6-24, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29077948

RESUMO

Phosphorus (P) constitutes one of five macronutrients essential for plant growth and development due to the central function of phosphate in energy metabolism, inheritance and metabolic control. In many ecosystems, plant available soil-P gets limited by soil aging. Hence, plants have developed adaptation strategies to cope with such limitation by an efficient plant and ecosystem internal P-cycling during annual growth. The natural floodplain habitat of fast-growing Populus × canescens is characterized by high soil-P availability. It was thus expected that the P-nutrition of P. × canescens had adapted to this conditions. Therefore, different P-fractions in different twig tissues were investigated during two annual growth cycles. The P-nutrition of P. × canescens markedly differs from that of European beech grown at low soil-P availability (Netzer F, Schmid C, Herschbach C, Rennenberg H (2017) Phosphorus-nutrition of European beech (Fagus sylvatica L.) during annual growth depends on tree age and P-availability in the soil. Environ Exp Bot 137:194-207). This was mainly due to a lack of tree internal P-cycling during annual growth indicated by the absence of P-storage and remobilization in twig bark and wood. Hence, strategies to economize P-nutrition and to prevent P-losses had not developed. This fits with the fast-growth strategy of P. × canescens at unrestricted P-availability. Hence, the P-nutrition strategy of P. × canescens can be seen as an evolutionary adaptation to its natural growth habitat.


Assuntos
Fósforo/metabolismo , Populus/metabolismo , Solo/química , Adaptação Fisiológica , Fosfatos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA