Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Phytother Res ; 36(7): 2710-2745, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35643985

RESUMO

Fungal infections are one of the main public health problems, especially in immunocompromised patients, nosocomial environments, patients with chronic diseases, and transplant recipients. These diseases are increasingly frequent and lethal because the microorganism has a high capacity to acquire resistance to available therapy. The main resistance factors are the emergence of new strains and the uncontrolled use of antifungals. It is, therefore, important to develop new methods that contribute to combating fungal diseases in the clinical area. Natural products have considerable potential for the development of new drugs with antifungal activity, mainly due to their biocompatibility and low toxic effect. This promising antimicrobial activity of natural products is mainly due to the presence of flavonoids, terpenes, and quinones, which explains their antifungal potential. Pharmaceutical nanotechnology has been explored to enhance the delivery, selectivity, and clinical efficacy of these products. Nanotechnological systems provide a safe and selective environment for various substances, such as natural products, improving antifungal activity. However, further safety experiments (in vivo or clinical trials) need to be carried out to prove the therapeutic action of natural products, since they may have undesirable, toxic, and mutagenic effects. Therefore, this review article addresses the main nanotechnological methods using natural products for effective future treatment against the main fungal diseases.


Assuntos
Produtos Biológicos , Micoses , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Humanos , Micoses/tratamento farmacológico , Micoses/microbiologia , Nanomedicina , Terpenos/uso terapêutico
2.
J Toxicol Environ Health A ; 84(14): 569-581, 2021 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-33730993

RESUMO

Copaifera langsdorffii Desf. is a plant found in South America, especially in Brazil. Oleoresin and the leaves of this plant is used as a popular medicinal agent. However, few studies on the chemical composition of aerial parts and related biological activities are known. This study aimed to examine the cytotoxic, genotoxic, and antigenotoxic potential of C. langsdorffii aerial parts hydroalcoholic extract (CLE) and two of its major compounds afzelin and quercitrin. The cytotoxic and antigenotoxic potential of CLE was determined as follows: 1) against genotoxicity induced by doxorubicin (DXR) or methyl methanesulfonate (MMS) in V79 cells; 2) by direct and indirect-acting mutagens in Salmonella typhimurium strains; and 3) by MMS in male Swiss mice. The protective effects of afzelin and quercitrin against DXR or MMS were also evaluated in V79 and HepG2 cells. CLE was cytotoxic as evidenced by clonogenic efficiency assay. Further, CLE did not induce a significant change in frequencies of chromosomal aberrations and micronuclei; as well as number of revertants in the Ames test demonstrating absence of genotoxicity. In contrast, CLE was found to be antigenotoxic in mammalian cells. The results also showed that CLE exerted inhibitory effect against indirect-acting mutagens in the Ames test. Afzelin and quercitrin did not reduce genotoxicity induced by DXR or MMS in V79 cells. However, treatments using afzelin and quercitrin decreased MMS-induced genotoxicity in HepG2 cells. The antigenotoxic effect of CLE observed in this study may be partially attributed to the antioxidant activity of the combination of major components afzelin and quercitrin.


Assuntos
Dano ao DNA/efeitos dos fármacos , Fabaceae/química , Manosídeos/farmacologia , Extratos Vegetais/farmacologia , Proantocianidinas/farmacologia , Substâncias Protetoras/farmacologia , Quercetina/análogos & derivados , Animais , Doxorrubicina/toxicidade , Células Hep G2 , Humanos , Masculino , Metanossulfonato de Metila/toxicidade , Camundongos , Mutagênicos/farmacologia , Mutagênicos/toxicidade , Extratos Vegetais/química , Folhas de Planta/química , Quercetina/farmacologia , Salmonella typhimurium/efeitos dos fármacos
3.
J Food Sci ; 85(1): 201-208, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31876295

RESUMO

The production of films and coatings from onion (Allium cepa L.) to be applied as packaging is attractive, due to its high nutritional and therapeutic value. Also, it can collaborate to minimize environmental impacts caused by the improper disposal of products made from plastics. However, despite it being an innovative and novel proposal, onion films for the development of edible packaging should be evaluated before being considered nontoxic and safe for human consumption. Thus, the objective of the present study was to elucidate the cytotoxic and mutagenic profile of eluates of polymer films of Allium cepa L. obtained by the casting process and to verify their safety for commercial purposes. The analysis of cellular viability demonstrated greater cytotoxicity for unwashed hydrothermally treated pulp (HTP) than for films of washed hydrothermally treated pulp (W-HTP). Regarding the mutagenic activity, the HTP and W-HTP films were not able to statistically increase the frequencies of the biomarkers for chromosome damage (micronucleus test) at the tested concentrations. However, the HTP films showed signs of mutagenicity in the Ames test (gene mutations), suggesting caution in their use. The detection of genotoxicity is highly recommended in order to avoid the risk of genotoxic exposure to mutagens and carcinogens. In conclusion, the absence of mutagenicity and cytotoxicity observed in this study is extremely relevant, because it provides support for toxicogenic properties of the Allium cepa films with promising applicability in the food industry. PRACTICAL APPLICATION: The bioplastics made from onion bulbs are multifunctional materials, which requires safety profile assessment. The results of the mutagenicity and cytotoxicity tests suggests that especially the W-HTP films are harmless, supporting at the first level of evidence, its safety potential to be used in the food industry (food films), biodegradable packaging, and biomaterials (substrates for drug delivery system).


Assuntos
Embalagem de Alimentos/instrumentação , Cebolas/química , Extratos Vegetais/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Qualidade de Produtos para o Consumidor , Dano ao DNA/efeitos dos fármacos , Filmes Comestíveis , Humanos , Mutagênese , Testes de Mutagenicidade , Extratos Vegetais/farmacologia , Raízes de Plantas/química
4.
Artigo em Inglês | MEDLINE | ID: mdl-30733813

RESUMO

Trees of the Copaifera genus are native to the tropical regions of Latin America and Western Africa. Copaifera sp is widely used as a popular medicine and it has various ethnopharmacological indications, including gonorrhea, bronchitis, asthma, skin ulcers, ulcers, sore throat, uterine infections, general inflammations, cancer, and leishmanioses. Kaurenoic acid is a naturally occurring diterpene found in Copaifera and has been used as an anti-inflammatory, treatment of ulcer, leishmaniasis, and cancer. Bearing in mind the fact that the Ames test is an excellent tool to assess the safety of extracts, oils, and phytochemicals isolated from medicinal plants, from it, we evaluate the mutagenic potential of four species, between oleoresins (C. oblongifolia; C. langsdorffii) and leaves extracts (C. lucens; C. multijuga), of the Copaifera genus and also of kaurenoic acid, which is one of its major compounds. The results showed that the Copaifera spp. and kaurenoic acid did not induce an increase in the number of revertant colonies, without mutagenic effect in experiments, in the all concentrations evaluated by Ames test. The results obtained in our study support the safe use of the Copaifera genus medicinal plants selected and of kaurenoic acid.

5.
J Toxicol Environ Health A ; 81(5): 116-129, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29286884

RESUMO

In view of the biological activities and growing therapeutic interest in oleoresin obtained from Copaifera multijuga, this study aimed to determine the genotoxic and antigenotoxic potential of this oleoresin (CMO) and its chemical marker, diterpene (-)-copalic acid (CA). The micronucleus (MN) assay in V79 cell cultures and the Ames test were used for in vitro analyses, as well as MN and comet assays in Swiss mice for in vivo analyses. The in vitro genotoxicity/mutagenicity results showed that either CMO (30, 60, or 120 µg/ml-MN assay; 0.39-3.12 mg/plate-Ames test) or CA (2.42; 4.84, or 9.7 µg/ml-MN assay; 0.39-3.12 mg/plate-Ames test) did not induce a significant effect on the frequency of MN and number of revertants, demonstrating an absence of genotoxic and mutagenic activities, respectively, in vitro. In contrast, these natural products significantly reduced the frequency of MN induced by methyl methanesulfonate (MMS), and exerted a marked inhibitory effect against indirect-acting mutagens in the Ames test. In the in vivo test system, animals treated with CMO (6.25 mg/kg b.w.) exhibited a significant decrease in rate of MN occurrence compared to those treated only with MMS. An antigenotoxic effect of CA was noted in the MN test (1 and 2 mg/kg b.w.) and the comet assay (0.5 mg/kg b.w.). Data suggest that the chemical marker of the genus Copaifera, CA, may partially be responsible for the observed chemopreventive effect attributed to CMO exposure. ABBREVIATIONS: 2-AA, 2-anthramine; 2-AF, 2-aminofluorene; AFB1, aflatoxin B1; B[a]P, benzo[a]pyrene; BOD, biological oxygen demand; BPDE, benzo[a]pyrene-7,8-diol-9,10-epoxide; CA, (-)-copalic acid; CMO, oleoresin of Copaifera multijuga, DMEM, Dulbecco`s Modified Eagles`s Medium; DMSO, dimethylsulfoxide; EMBRAPA, Brazilian agricultural research corporation; GC-MS, gas chromatography-mass spectrometry; HAM-F10, nutrient mixture F-10 Ham; HPLC, high performance liquid chromatography; LC-MS, liquid chromatography-mass spectrometry; MI, mutagenic index; MMC, mitomycin C; MMS, methyl methanesulfonate; MN, micronucleus; MNPCE, micronucleated polychromatic erythrocyte; NCE, normochromatic erythrocyte; NDI, nuclear division index; NMR, nuclear magnetic resonance; NPD, 4-nitro-o-phenylenediamine; PBS, phosphate-buffered saline; PCE, polychromatic erythrocyte; SA, sodium azide; V79, Chinese hamster lung fibroblast.


Assuntos
Antimutagênicos/farmacologia , Diterpenos/farmacologia , Fabaceae/química , Extratos Vegetais/farmacologia , Animais , Ensaio Cometa , Cricetulus , Fibroblastos/efeitos dos fármacos , Pulmão , Masculino , Camundongos , Testes para Micronúcleos , Testes de Mutagenicidade
6.
Regul Toxicol Pharmacol ; 90: 29-35, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28823851

RESUMO

Arrabidaea brachypoda (DC.) Bureau is a shrub native Cerrado, known as "cipó-una", "tintureiro" or "cervejinha do campo" and popularly used in Southeastern and Northeastern Brazil to treatment of kidney stones and painful joints (arthritis). Nevertheless, scientific information regarding this species is scarce, and there are no reports related to its possible estrogenic and mutagenic effects. Thus, the principal objective of this study was to assess the mutagenic and estrogenic activities of the hydroalcoholic extracts of the leaves, stalks, roots, their respective fractions and isolated compounds of A. brachypoda. The mutagenic activity was evaluated by the Ames test on Salmonella typhimurium strains TA98, TA97a, TA100 and TA102, in the absence (-S9) and presence (+S9) of metabolic activation system. In the RYA was used Saccharomyces cerevisiae engineered strain BY4741 (MATaura3Δ0 leu2Δ0 his3Δ1 met15Δ0) which reproduce the natural pathway of genetic control by estrogens in vertebrate cells; it has the advantage of its simplicity and a high throughput. All extracts and aqueous fraction of leaves A. brachypoda were mutagenic. The crude extract is more active than the fraction, suggesting a synergic effect. Only hydroalcoholic extracts of leaves and roots of A. brachypoda showed significant estrogenic activity, with ERα-dependent transcriptional activation activity. The obtained results in this study showed the presence of compounds capable of interacting with the estrogen receptor and to induce damage in the genetic material. Thus, we demonstrated the risk which the population is subjected due to indiscriminate use of extracts without detailed study.


Assuntos
Bignoniaceae/química , Estrogênios/metabolismo , Medicina Tradicional/efeitos adversos , Mutagênicos/toxicidade , Extratos Vegetais/toxicidade , Animais , Brasil , Receptor alfa de Estrogênio/metabolismo , Humanos , Medicina Tradicional/métodos , Testes de Mutagenicidade/métodos , Folhas de Planta/toxicidade , Raízes de Plantas/toxicidade , Caules de Planta/toxicidade , Ratos , Ratos Sprague-Dawley , Medição de Risco , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/genética
7.
J Med Microbiol ; 65(9): 937-950, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27452156

RESUMO

Copaifera trapezifolia Hayne occurs in the Atlantic Rainforest, which is considered one of the most important and endangered tropical forests on the planet. Although literature works have described many Copaifera spp., their biological activities remain little known. In the present study, we aimed to evaluate (1) the potential of the hydroalcoholic extract from C. trapezifolia leaves (CTE) to act against the causative agents of tooth decay and apical periodontitis and (2) the cytotoxicity and mutagenicity of CTE to ensure that it is safe for subsequent application. Concerning the tested bacteria, the MIC and the minimum bactericidal concentration of CTE varied between 100 and 400 µg ml-1. The time-kill assay conducted at a CTE concentration of 100 µg ml-1 evidenced bactericidal activity against Porphyromonas gingivalis (ATCC 33277) and Peptostreptococcus micros (clinical isolate) within 72 h. CTE at 200 µg ml-1 inhibited Porphyromonas gingivalis and Peptostreptococcus micros biofilm formation by at least 50 %. A combination of CTE with chlorhexidine dichlorohydrate did not prompt any synergistic effects. The colony-forming assay conducted on V79 cells showed that CTE was cytotoxic at concentrations above 156 µg ml-1. CTE exerted mutagenic effect on V79 cells, but the micronucleus test conducted on Swiss mice and the Ames test did not reveal any mutagenicity. Therefore, the use of standardized and safe extracts could be an important strategy to develop novel oral care products with antibacterial action. These extracts could also serve as a source of compounds for the discovery of new promising biomolecules.


Assuntos
Antibacterianos/farmacologia , Antibacterianos/toxicidade , Produtos Biológicos/farmacologia , Produtos Biológicos/toxicidade , Fabaceae/química , Extratos Vegetais/farmacologia , Extratos Vegetais/toxicidade , Animais , Antibacterianos/isolamento & purificação , Biofilmes/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cricetinae , Humanos , Masculino , Camundongos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Testes de Mutagenicidade , Peptostreptococcus/efeitos dos fármacos , Peptostreptococcus/fisiologia , Extratos Vegetais/isolamento & purificação , Folhas de Planta/química , Porphyromonas gingivalis/efeitos dos fármacos , Porphyromonas gingivalis/fisiologia
8.
Mutagenesis ; 31(2): 147-60, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26314304

RESUMO

Machaerium hirtum (Vell.) Stellfeld (M.hirtum) is a plant known as 'jacarandá-bico-de-pato' whose bark is commonly used against diarrhea, cough and cancer. The aim of this study was to phytochemically characterise the hydroethanolic extract of this plant, investigate its antimutagenic activities using the Ames test and evaluate its effects on cell viability, genomic instability, gene expression and cell protection in human hepatocellular carcinoma cells (HepG2). Antimutagenic activity was assessed by simultaneous pre- and post-treatment with direct and indirect mutagens, such as 4-nitro-o-phenylenediamine (NPD), mitomycin C (MMC), benzo[a]pyrene (B[a]P) and aflatoxin B1 (AFB1), using the Ames test, cytokinesis blocking micronucleus and apoptosis assays. Only 3 of the 10 concentrations evaluated in the MTT assay were cytotoxic in HepG2 cells. Micronucleated or apoptotic cells were not observed with any of the tested concentrations, and there were no mutagenic effects in the bacterial system. However, the Nuclear Division Index and flow cytometry data showed a decrease in cell proliferation. The extract showed an inhibitory effect against direct (NPD) and indirect mutagens (B[a]P and AFB1). Furthermore, pre- and post-treated cells showed significant reduction in the number of apoptotic and micronucleated cells. This effect is not likely to be associated with the modulation of antioxidant genes, as shown by the RT-qPCR results. Six known flavonoids were identified in the hydroethanolic extract of Machaerium hirtum leaves, and their structures were elucidated by spectroscopic and spectrophotometric methods. The presence of the antioxidants apigenin and luteolin may explain these protective effects, because these components can inhibit the formation of reactive species and prevent apoptosis and DNA damage. In conclusion, the M.hirtum extract showed chemopreventive potential and was not hazardous at the tested concentrations in the experiments presented here. Moreover, this extract should be investigated further as a chemopreventive agent.


Assuntos
Antimutagênicos/farmacologia , Fabaceae/química , Extratos Vegetais/farmacologia , Antimutagênicos/química , Antimutagênicos/toxicidade , Apoptose/efeitos dos fármacos , Apoptose/genética , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Flavonoides/química , Flavonoides/farmacologia , Flavonoides/toxicidade , Citometria de Fluxo , Expressão Gênica , Humanos , Micronúcleos com Defeito Cromossômico , Testes para Micronúcleos , Testes de Mutagenicidade , Mutação/efeitos dos fármacos , Extratos Vegetais/química , Extratos Vegetais/toxicidade , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/genética
9.
J Ethnopharmacol ; 172: 312-24, 2015 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-26099637

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Serjania marginata (Sapindaceae), a medicinal plant commonly found in the Brazilian Cerrado, Paraguay, Bolivia and Argentina, is also known as "cipó-uva" or "cipó-timbó". Ethnopharmacological studies indicate that the leaves from this medicinal plant are used in folk medicine to treat gastric pain. The overall objective of this study was to evaluate the gastroprotective and healing effect of the hydroalcoholic extract obtained from S. marginata (HESM) leaves using rodent experimental models. As part of the integrative study of this medicinal plant, we also evaluated the acute toxicity, antimicrobial, antidiarrheal, (anti)mutagenic, and hemodynamic effects. MATERIAL AND METHODS: We performed a pharmacological study to test the acute toxicity and antimutagenic effect (Ames assay) of the HESM. The HESM was tested against different necrosis-promoting agents and experimental manipulations, such as absolute ethanol, cysteamine, pyloric ligature, and ischemia-reperfusion (I/R) injury. The gastroprotective effect of the HESM was assessed by analyzing the gastric juice (volume, pH, total acidity) and the mucus in the gastric mucosa from rats. We assessed the levels of NO, sulfhydryl compounds, PGE2, vanilloid receptor, glutathione (GSH), and malondialdehyde (MDA), as well as the myeloperoxidase (MPO) activity. The gastric healing effects of the HESM were evaluated during 7 or 14 days of treatment. The intestinal motility, antidiarrheal action, and antibacterial effects (microdilution methods) of the HESM were also evaluated. RESULTS: The phytochemical analysis of the HESM revealed the presence of saponins, flavonoid glycosides, and tannins. The extract exhibited no sign of acute toxicity or mutagenic effect in vitro. In contrast, this extract exhibited a protective effect against the mutagenic action of direct- and indirect-acting mutagens. Only the oral administration of HESM (250mg/kg) significantly decreased the severity of gastric damage induced by ethanol (60.13%) and I/R (58.31%). The HESM exerts its gastroprotective effects by decreasing the MPO and MDA activities in the gastric tissue and by increasing the amount of adherent mucus covering the gastric mucosa. In vitro, the extract also displayed evident antimicrobial effects against Helicobacter pylori. However, the preventive effect of the HESM was not accompanied by an ulcer-healing effect. The treatment with HESM (14 days) significantly increased gastric lesions in 99% of the tested animals compared with the control group. This result represents a highly relevant piece of evidence that should resonate as an alert against the chronic use of this medicinal plant as an antiulcer in folk medicine. CONCLUSIONS: Despite the anti-H. pylori and gastroprotective actions of S. marginata in experimental models, the gastric injuries aggravation induced after chronic treatment with the HESM argues against the use of this plant species in folk medicine.


Assuntos
Antiulcerosos/farmacologia , Extratos Vegetais/farmacologia , Sapindaceae/química , Úlcera Gástrica/prevenção & controle , Animais , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Antibacterianos/toxicidade , Antiulcerosos/isolamento & purificação , Antiulcerosos/toxicidade , Antidiarreicos/isolamento & purificação , Antidiarreicos/farmacologia , Antidiarreicos/toxicidade , Modelos Animais de Doenças , Feminino , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/patologia , Masculino , Medicina Tradicional , Camundongos , Extratos Vegetais/toxicidade , Folhas de Planta , Ratos , Ratos Wistar , Fatores de Tempo , Testes de Toxicidade Aguda
10.
Regul Toxicol Pharmacol ; 72(3): 506-13, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26002624

RESUMO

In the neotropical savannah, Astronium species are used in popular medicine to treat allergies, inflammation, diarrhea and ulcers. Given that natural products are promising starting points for the discovery of novel potentially therapeutic agents, the aim of the present study was to investigate the mutagenic and antimutagenic activities of hydroalcoholic extracts of Astronium spp. The mutagenicity was determined by the Ames test on Salmonella typhimurium strains TA98, TA97a, TA100 and TA102. The antimutagenicity was tested against the direct-acting and indirect-acting mutagens. The results showed that none of the extracts induce any increase in the number of revertants, demonstrating the absence of mutagenic activity. On the other hand, the results on the antimutagenic potential showed a moderate inhibitory effect against NPD and a strong protective effect against B[a]P and AFB1. This study highlights the importance of screening species of Astronium for new medicinal compounds. The promising results obtained open up new avenues for further study and provide a better understanding the mechanisms by which these species act in protecting DNA from damage. However, further pharmacological and toxicological investigations of crude extracts of Astronium spp., as well as of its secondary metabolites, are necessary to determine the mechanism(s) of action to guarantee their safer and more effective application to human health.


Assuntos
Anacardiaceae , Antimutagênicos/farmacologia , Extratos Vegetais/farmacologia , Testes de Mutagenicidade , Mutagênicos/toxicidade , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/genética
11.
Molecules ; 19(10): 16039-57, 2014 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-25299821

RESUMO

Caesalpinia ferrea Martius has traditionally been used in Brazil for many medicinal purposes, such as the treatment of bronchitis, diabetes and wounds. Despite its use as a medicinal plant, there is still no data regarding the genotoxic effect of the stem bark. This present work aims to assess the qualitative and quantitative profiles of the ethanolic extract from the stem bark of C. ferrea and to evaluate its mutagenic activity, using a Salmonella/microsome assay for this species. As a result, a total of twenty compounds were identified by Flow Injection Analysis Electrospray Ionization Ion Trap Mass Spectrometry (FIA-ESI-IT-MS/MSn) in the ethanolic extract from the stem bark of C. ferrea. Hydrolyzable tannins predominated, principally gallic acid derivatives. The HPLC-DAD method was developed for rapid quantification of six gallic acid compounds and ellagic acid derivatives. C. ferrea is widely used in Brazil, and the absence of any mutagenic effect in the Salmonella/microsome assay is important for pharmacological purposes and the safe use of this plant.


Assuntos
Caesalpinia/química , Mutagênicos/química , Mutagênicos/farmacologia , Casca de Planta/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Caules de Planta/química , Estrutura Molecular
12.
BMC Complement Altern Med ; 14: 182, 2014 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-24898326

RESUMO

BACKGROUND: In various regions of Brazil, several species of the genus Byrsonima (Malpighiaceae) are widely used to treat gastrointestinal complications. This genus has about 150 species of shrubs and trees distributed over the entire Neotropical region. Various biological activities have been identified in these plants, especially antioxidant, antimicrobial and topical and systemic anti-inflammatory activities. The aim of this study was to investigate the mutagenicity and antimutagenicity of hydroalcoholic leaf extracts of six species of Byrsonima: B. verbascifolia, B. correifolia, B. coccolobifolia, B. ligustrifolia, B. fagifolia and B. intermedia by the Salmonella microsome assay (Ames test). METHODS: Mutagenic and antimutagenic activity was assessed by the Ames test, with the Salmonella typhimurium tester strains TA100, TA98, TA97a and TA102, with (+S9) and without (-S9) metabolization, by the preincubation method. RESULTS: Only B. coccolobifolia and B. ligustrifolia showed mutagenic activity. However, the extracts of B. verbascifolia, B. correifolia, B. fagifolia and B. intermedia were found to be strongly antimutagenic against at least one of the mutagens tested. CONCLUSIONS: These results contribute to valuable data on the safe use of medicinal plants and their potential chemopreventive effects. Considering the excellent antimutagenic activities extracted from B. verbascifolia, B. correifolia, B. fagifolia and B. intermedia, these extracts are good candidate sources of chemopreventive agents. However, B. coccolobifolia and B. ligustrifolia showed mutagenic activity, suggesting caution in their use.


Assuntos
Antimutagênicos/análise , Malpighiaceae/química , Mutagênicos/análise , Brasil , Extratos Vegetais/química , Folhas de Planta/química , Plantas , Plantas Medicinais/química , Salmonella , Salmonella typhimurium
13.
Artigo em Inglês | MEDLINE | ID: mdl-24734110

RESUMO

Terminalia is a genus of Combretaceous plants widely distributed in tropical and subtropical regions. Thus, the aim of this study was to quantify the majority compounds of the hydroalcoholic extract (7 : 3, v/v) of the leaves from T. catappa by HPLC-PDA, chemically characterize by hyphenated techniques (HPLC-ESI-IT-MS(n)) and NMR, and evaluate its mutagenic activity by the Salmonella/microsome assay on S. typhimurium strains TA98, TA97a, TA100, and TA102. The quantification of analytes was performed using an external calibration standard. Punicalagin is the most abundant polyphenol found in the leaves. The presence of this compound as a mixture of anomers was confirmed using HPLC-PDA and (1)H and (13)C NMR. Mutagenic activity was observed in strains TA100 and TA97a. As the extract is a complex mixture of punicalagin, its derivatives, and several other compounds, the observed mutagenicity may be explained in part by possible synergistic interaction between the compounds present in the extract. These studies show that mutagenic activity of T. catappa in the Ames test can only be observed when measured at high concentrations. However, considering the mutagenic effects observed for T. catappa, this plant should be used cautiously for medicinal purposes.

14.
Steroids ; 78(11): 1053-63, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23891669

RESUMO

The possible benefits of some bioactive flavones and xanthones present in plants of the genus Syngonanthus prompted us to screen them for estrogenic activity. However, scientific research has shown that such substances may have undesirable properties, such as mutagenicity, carcinogenicity and toxicity, which restrict their use as therapeutic agents. Hence, the aim of this study was to assess the estrogenicity and mutagenic and antimutagenic properties. We used recombinant yeast assay (RYA), with the strain BY4741 of Saccharomyces cerevisiae, and Ames test, with strains TA100, TA98, TA97a and TA102 of Salmonella typhimirium, to evaluate estrogenicity, mutagenicity and antimutagenicity of methanolic extracts of Syngonanthus dealbatus (S.d.), Syngonanthus macrolepsis (S.m.), Syngonanthus nitens (S.n.) and Syngonanthus suberosus (S.s.), and of 9 compounds isolated from them (1=luteolin, 2=mix of A-1,3,6-trihydroxy-2-methoxyxanthone and B-1,3,6-trihydroxy-2,5-dimethoxyxanthone, 3=1,5,7-trihydroxy-3,6-dimethoxyxanthone, 4=1,3,6,8-tetrahydroxy-2,5-dimethoxyxanthone, 5=1,3,6,8-tetrahydroxy-5-methoxyxanthone, 6=7-methoxyluteolin-8-C-ß-glucopyranoside, 7=7-methoxyluteolin-6-C-ß-glucopyranoside, 8=7,3'-dimethoxyluteolin-6-C-ß-glucopyranoside and 9=6-hydroxyluteolin). The results indicated the estrogenic potential of the S. nitens methanol extract and four of its isolated xanthones, which exhibited, respectively, 14.74±1.63 nM; 19.54±6.61; 7.20±0.37; 6.71±1.02 e 10.01±4.26 nM of estradiol-equivalents (EEQ). None of the extracts or isolated compounds showed mutagenicity in any of the test strains and all of them showed antimutagenic potential, in particular preventing mutations caused by aflatoxin B1 (AFB1) and benzo[a]pyrene (B[a]P). The results show that the xanthones, only isolated from the methanol extract of S. nitens capitula, probably were the responsible for its estrogenic activity and could be useful as phytoestrogens, providing a new opportunity to develop hormonal agents. In addition, flavones and xanthones could also be used as a new antimutagenic agent. Since, the mutagens are involved in the initiation and promotion of several human diseases, including cancer, the significance of novel bioactive phytocompounds in counteracting these pro-mutagenic and carcinogenic effects is now gaining credence.


Assuntos
Antimutagênicos/farmacologia , Eriocaulaceae/química , Estrogênios/farmacologia , Flavonas/farmacologia , Xantonas/farmacologia , Antimutagênicos/isolamento & purificação , Antimutagênicos/toxicidade , Quimioprevenção , Estrogênios/isolamento & purificação , Estrogênios/toxicidade , Flavonas/isolamento & purificação , Flavonas/toxicidade , Humanos , Metanol/química , Mutagênicos/toxicidade , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Extratos Vegetais/toxicidade , Saccharomyces cerevisiae/efeitos dos fármacos , Salmonella/efeitos dos fármacos , Xantonas/isolamento & purificação , Xantonas/toxicidade
15.
BMC Complement Altern Med ; 12: 203, 2012 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-23114276

RESUMO

BACKGROUND: The dibenzylbutyrolactone lignan (-)-hinokinin (HK) was derived by partial synthesis from (-)-cubebin, isolated from the dry seeds of the pepper, Piper cubeba. Considering the good trypanosomicidal activity of HK and recalling that natural products are promising starting points for the discovery of novel potentially therapeutic agents, the aim of the present study was to investigate the (anti) mutagenic∕ genotoxic activities of HK. METHODS: The mutagenic∕ genotoxic activities were evaluated by the Ames test on Salmonella typhimurium strains TA98, TA97a, TA100 and TA102, and the comet assay, so as to assess the safe use of HK in the treatment of Chagas' disease. The antimutagenic ∕antigenotoxic potential of HK were also tested against the mutagenicity of a variety of direct and indirect acting mutagens, such as 4- nitro-o-phenylenediamine (NOPD), sodium azide (SA), mitomycin C (MMC), benzo[a]pyrene (B[a]P), aflatoxin B1 (AFB1), 2-aminoanthracene (2-AA) and 2-aminofluorene (2-AF), by the Ames test, and doxorubicin (DXR) by the comet assay. RESULTS: The mutagenicity∕genotoxicity tests showed that HK did not induce any increase in the number of revertants or extent of DNA damage, demonstrating the absence of mutagenic and genotoxic activities. On the other hand, the results on the antimutagenic potential of HK showed a strong inhibitory effect against some direct and indirect-acting mutagens. CONCLUSIONS: Regarding the use of HK as an antichagasic drug, the absence of mutagenic effects in animal cell and bacterial systems is encouraging. In addition, HK may be a new potential antigenotoxic ∕ antimutagenic agent from natural sources. However, the protective activity of HK is not general and varies with the type of DNA damage-inducing agent used.


Assuntos
4-Butirolactona/análogos & derivados , Antimutagênicos/farmacologia , Dioxóis/farmacologia , Lignanas/farmacologia , Mutagênicos/farmacologia , Piper/química , Extratos Vegetais/farmacologia , Tripanossomicidas/farmacologia , 4-Butirolactona/farmacologia , Animais , Benzodioxóis , Linhagem Celular , Doença de Chagas/tratamento farmacológico , Ensaio Cometa , Cricetinae , Dano ao DNA/efeitos dos fármacos , Humanos , Salmonella/efeitos dos fármacos , Sementes/química
16.
Molecules ; 17(3): 2335-50, 2012 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-22367028

RESUMO

Baccharis dracunculifolia is a plant native from Brazil, commonly known as 'Alecrim-do-campo' and 'Vassoura' and used in alternative medicine for the treatment of inflammation, hepatic disorders and stomach ulcers. Previous studies reported that artepillin C (ArtC, 3-{4-hydroxy-3,5-di(3-methyl-2-butenyl)phenyl}-2(E)-propenoic acid), is the main compound of interest in the leaves. This study was undertaken to assess the mutagenic effect of the ethyl acetate extract of B. dracunculifolia leaves (Bd-EAE: 11.4-182.8 µg/plate) and ArtC (0.69-10.99 µg/plate) by the Ames test using Salmonella typhimurium strains TA98, TA97a, TA100 and TA102, and to compare the protective effects of Bd-EAE and ArtC against the mutagenicity of a variety of direct and indirect acting mutagens such as 4-nitro-O-phenylenediamine, sodium azide, mitomycin C, benzo[a]pyrene, aflatoxin B1, 2-aminoanthracene and 2-aminofluorene.The mutagenicity test showed that Bd-EAE and ArtC did not induce an increase in the number of revertant colonies indicating absence of mutagenic activity. ArtC showed a similar antimutagenic effect to that of Bd-EAE in some strains of S. typhimurium, demonstrating that the antimutagenic activity of Bd-EAE can be partially attributed to ArtC. The present results showed that the protective effect of whole plant extracts is due to the combined and synergistic effects of a complex mixture of phytochemicals, the total activity of which may result in health benefits.


Assuntos
Antimutagênicos/farmacologia , Baccharis/química , Testes de Mutagenicidade , Fenilpropionatos/farmacologia , Extratos Vegetais/farmacologia , Mutagênicos/farmacologia , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/genética
17.
J Appl Toxicol ; 30(3): 254-9, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19847787

RESUMO

Rosmarinic acid (RA) is a naturally occurring phenolic compound, which contributes to the beneficial and health-promoting effects of herbs, spices and medicinal plants. RA has shown several biological activities, such as hepatoprotective, anti-inflammatory, antiangiogenic, antitumor, antidepressant, antineurodegenerative, HIV-1 inhibitory and antioxidant effects. The aim of this study was to investigate the ability of RA to prevent chemically induced chromosome breakage or loss and primary DNA damage using the micronucleus and comet assays with V79 cells, respectively. The chemotherapeutic agent doxorubicin (DXR; 0.5 microg ml(-1)) was used as the DNA-damaging agent. The cultures were treated with different concentrations of RA (0.28, 0.56 and 1.12 mm) alone or in combination with DXR. The results showed that RA exerted no genotoxic effect, but significantly reduced the frequency of micronuclei and the extent of DNA damage induced by DXR at the three concentrations tested. The antioxidant activity of RA might be involved in the reduction of DXR-induced DNA damage observed in the present study.


Assuntos
Antimutagênicos/farmacologia , Cinamatos/farmacologia , Depsídeos/farmacologia , Animais , Antimutagênicos/química , Antimutagênicos/isolamento & purificação , Antineoplásicos/toxicidade , Linhagem Celular , Quimioprevenção , Quebra Cromossômica/efeitos dos fármacos , Deleção Cromossômica , Cinamatos/química , Cinamatos/isolamento & purificação , Ensaio Cometa , Cricetinae , Cricetulus , Dano ao DNA/efeitos dos fármacos , Depsídeos/química , Depsídeos/isolamento & purificação , Doxorrubicina/toxicidade , Fibroblastos , Testes para Micronúcleos , Mutagênicos/toxicidade , Concentração Osmolar , Folhas de Planta/química , Rosmarinus/química , Ácido Rosmarínico
18.
Planta Med ; 74(11): 1363-7, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18683127

RESUMO

Baccharis dracunculifolia De Candole (Asteraceae), a native plant from the Brazilian "cerrado", is widely used in folk medicine as an anti-inflammatory agent and for the treatment of gastrointestinal diseases. B. dracunculifolia has been described as the most important plant source of propolis in southeastern Brazil, which is called green propolis due to its color. The aim of the present study was to evaluate the mutagenic and antimutagenic effects of the ethyl acetate extract of B. dracunculifolia leaves (Bd-EAE) on Chinese hamster ovary cells. On one hand, the results showed a significant increase in the frequencies of chromosome aberrations at the highest Bd-EAE concentration tested (100 microg/mL). On the other hand, the lowest Bd-EAE concentration tested (12.5 micro/mL) significantly reduced the chromosome damage induced by the chemotherapeutic agent doxorubicin. The present results indicate that Bd-EAE has the characteristics of a so-called Janus compound, that is, Bd-EAE is mutagenic at higher concentrations, whereas it displays a chemopreventive effect on doxorubicin-induced mutagenicity at lower concentrations. The constituents of B. dracunculifolia responsible for its mutagenic and antimutagenic effects are probably flavonoids and phenylpropanoids, since these compounds can act either as pro-oxidants or as free radical scavengers depending on their concentration.


Assuntos
Antimutagênicos/análise , Baccharis/química , Aberrações Cromossômicas/induzido quimicamente , Extratos Vegetais/toxicidade , Animais , Células CHO , Cricetinae , Cricetulus , Testes de Mutagenicidade , Extratos Vegetais/química
19.
Mutat Res ; 634(1-2): 112-8, 2007 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-17689136

RESUMO

Baccharis dracunculifolia DC (Asteraceae), a native plant from Brazil, have been used as an antipyretic, stomachic and health tonic in Brazil. The objective of the present study was to investigate the potential mutagenic effect of B. dracunculifolia ethyl acetate extract (Bd-EAE) and its influence on the mutagenicity induced by the chemotherapeutic agent doxorubicin (DXR) using the rat bone marrow and peripheral blood micronucleus test. Wistar rats were divided into 10 treatment groups. Five groups received DXR (90 mg/kg body weight, b.w., intraperitoneally) to induce mutagenicity and three of these groups received a single oral dose of Bd-EAE at a concentration of 6, 12 or 24 mg/kg b.w. prior to DXR administration. A vehicle-treated control group and Bd-EAE control groups were also included. The results showed that Bd-EAE itself was not mutagenic, in the rat micronucleus assay. In animals treated with Bd-EAE and DXR, the number of MNPCEs was significantly decreased compared to animals receiving DXR alone. HPLC analysis of the extract obtained permitted the identification of the following phenolic compounds: caffeic acid, p-coumaric acid, aromadendrin-4'O-methyl ether, 3-prenyl-p-coumaric acid (drupanin), 3,5-diprenyl-p-coumaric acid (artepillin C) and baccharin. The putative antioxidant activity or the interference of one or more of the active compounds of Bd-EAE with mutagenic metabolic pathways may explain its effect on DXR mutagenicity.


Assuntos
Antimutagênicos/farmacologia , Baccharis , Doxorrubicina/toxicidade , Extratos Vegetais/toxicidade , Animais , Antibióticos Antineoplásicos/toxicidade , Avaliação Pré-Clínica de Medicamentos , Testes para Micronúcleos , Extratos Vegetais/farmacologia , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA