Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 26(20)2021 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-34684700

RESUMO

Background: The present study investigated the antifungal activity and mode of action of four Olea europaea leaf extracts, Thymus vulgaris essential oil (EO), and Boswellia carteri EO against Fusarium oxysporum. Methods:Fusarium oxysporum Lactucae was detected with the internal transcribed spacer (ITS) region. The chemical compositions of chloroform and dichloromethane extracts of O. europaea leaves and T. vulgaris EO were analyzed using GC-MS analysis. In addition, a molecular docking analysis was used to identify the expected ligands of these extracts against eleven F. oxysporum proteins. Results: The nucleotide sequence of the F. oxysporum Lactucae isolate was deposited in GenBank with Accession No. MT249304.1. The T. vulgaris EO, chloroform, dichloromethane and ethanol efficiently inhibited the growth at concentrations of 75.5 and 37.75 mg/mL, whereas ethyl acetate, and B. carteri EO did not exhibit antifungal activity. The GC-MS analysis revealed that the major and most vital compounds of the T. vulgaris EO, chloroform, and dichloromethane were thymol, carvacrol, tetratriacontane, and palmitic acid. Moreover, molecular modeling revealed the activity of these compounds against F. oxysporum. Conclusions: Chloroform, dichloromethane and ethanol, olive leaf extract, and T. vulgaris EO showed a strong effect against F. oxysporum. Consequently, this represents an appropriate natural source of biological compounds for use in healthcare. In addition, homology modeling and docking analysis are the best analyses for clarifying the mechanisms of antifungal activity.


Assuntos
Antifúngicos/farmacologia , Boswellia/química , Fusarium/efeitos dos fármacos , Óleos Voláteis/farmacologia , Olea/química , Extratos Vegetais/farmacologia , Thymus (Planta)/química , Fusarium/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana/métodos
2.
Phytochem Anal ; 32(5): 724-739, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33314357

RESUMO

INTRODUCTION: Medicinal plants have been used in healthcare since time immemorial, as have their therapeutic activities and the production of plant-based medicines. OBJECTIVES: This study aims to use gene-targeted molecular markers for genetic diversity analysis of 16 medicinal plants. Besides, phytochemical analysis antibacterial and antifungal activities of some medicinal plant extracts commonly used in Egypt are compared to major compounds. METHODS: DNA-based classification of 16 medicinal species using Conserved DNA-Derived Polymorphism (CDDP) and Start Codon Targeted (SCoT) primers. Three species representing three orders (Pelargonium graveolens, Matricaria chamomilla, and Hyoscyamus muticus were analysed [high-performance liquid chromatography (HPLC), gas chromatography-mass spectrometry (GC-MS)] and evaluated for their antibacterial and antifungal activities against (Escherichia coli O157: H7 ATCC 93111, Salmonella typhimurium ATCC 14028, Methicillin-resistant Staphylococcus aureus (MRSA) ATCC 43300, Bacillus ceruse ATCC 33018, and Sclerotinia sclerotiorum in comparison with some of their antimicrobial components. RESULTS: Our results revealed 309 and 349 polymorphic bands with 100% polymorphism. Among them, 51 and 57 were unique loci for CDDP and SCoT, respectively. The 16 species were categorised into three groups depending on the similarity matrix. The results of antibacterial and antifungal activities revealed that Pelargonium oil showed significant antifungal and antibacterial activities against the tested pathogens. Gallic acid severely reduced all tested bacteria's growth, but atropine severely reduced the growth of the B. ceruse only. Molecular modelling revealed their activity against sclerotium development. CONCLUSION: The gene-targeted marker techniques were highly useful tools for the classification of the 16 medicinal plant species, despite displaying high similarities at morphological and phytochemical analyses but, have antifungal and antibacterial activities.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Plantas Medicinais , Antibacterianos/farmacologia , Antifúngicos/farmacologia , Ascomicetos , Egito , Testes de Sensibilidade Microbiana , Filogenia , Compostos Fitoquímicos/farmacologia , Extratos Vegetais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA