Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1247199, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37711618

RESUMO

The present study explores the effects of two supplementation levels of Debaryomyces hansenii (1.1% and 2.2%) as a probiotic in a reference low fish meal-based diet on the skin mucosal tissue in Sparus aurata. This study includes the evaluation of fish performance coupled with a holistic study of the skin mucosa: i) a transcriptomic study of the skin tissue, and ii) the evaluation of its secreted mucus both in terms of skin mucosal-associated biomarkers and its defensive capacity by means of co-culture analysis with two pathogenic bacteria. Results showed that after 70 days of diet administration, fish fed the diet supplemented with D. hansenii at 1.1% presented increased somatic growth and a better feed conversion ratio, compared to fish fed the control diet. In contrast, fish fed the diet including 2.2% of the probiotic presented intermediate values. Regarding gene regulation, the probiotic administration at 1.1% resulted in 712 differentially expressed genes (DEGs), among which 53.4% and 46.6% were up- and down-regulated, respectively. In particular, D. hansenii modulated some skin biological processes related to immunity and metabolism. Specifically, D. hansenii administration induced a strong modulation of some immune biological-related processes (61 DEGs), mainly involved in B- and T-cell regulatory pathways. Furthermore, dietary D. hansenii promoted the skin barrier function by the upregulation of anchoring junction genes (23 DEGs), which reinforces the physical defense against potential skin damage. In contrast, the skin showed modulated genes related to extracellular exosome and membrane organization (50 DEGs). This modulated functioning is of great interest, particularly in relation to the increased skin mucus defensive capacity observed in the bacterial co-culture in vitro trials, which could be related to the increased modulation and exudation of the innate immune components from the skin cells into the mucus. In summary, the modulation of innate immune parameters coupled with increased skin barrier function and cell trafficking potentiates the skin's physical barrier and mucus defensive capacity, while maintaining the skin mucosa's homeostatic immune and metabolic status. These findings confirmed the advantages of D. hansenii supplementation in low fish meal-based diets, demonstrating the probiotic benefits on cultured marine species.


Assuntos
Debaryomyces , Dourada , Animais , Dieta , Suplementos Nutricionais , Pele
2.
Front Immunol ; 12: 737601, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867959

RESUMO

In the present study, the modulation of the transcriptional immune response (microarray analysis) in the head kidney (HK) of the anadromous fish Atlantic salmon (Salmo salar) fed a diet supplemented with an olive fruit extract (AQUOLIVE®) was evaluated. At the end of the trial (133 days), in order to investigate the immunomodulatory properties of the phytogenic tested against a bacterial infection, an in vivo challenge with Aeromonas salmonicida was performed. A total number of 1,027 differentially expressed genes (DEGs) (805 up- and 222 downregulated) were found when comparing the transcriptomic profiling of the HK from fish fed the control and AQUOLIVE® diets. The HK transcripteractome revealed an expression profile that mainly favored biological processes related to immunity. Particularly, the signaling of i-kappa B kinase/NF-kappa and the activation of leukocytes, such as granulocytes and neutrophils degranulation, were suggested to be the primary actors of the innate immune response promoted by the tested functional feed additive in the HK. Moreover, the bacterial challenge with A. salmonicida that lasted 12 days showed that the cumulative survival was higher in fish fed the AQUOLIVE® diet (96.9 ± 6.4%) than the control group (60.7 ± 13.5%). These results indicate that the dietary supplementation of AQUOLIVE® at the level of 0.15% enhanced the systemic immune response and reduced the A. salmonicida cumulative mortality in Atlantic salmon smolts.


Assuntos
Doenças dos Peixes/imunologia , Doenças dos Peixes/prevenção & controle , Furunculose/imunologia , Furunculose/prevenção & controle , Olea/química , Fitoterapia/veterinária , Salmo salar/imunologia , Salmo salar/microbiologia , Aeromonas salmonicida/imunologia , Aeromonas salmonicida/patogenicidade , Animais , Doenças dos Peixes/microbiologia , Furunculose/microbiologia , Perfilação da Expressão Gênica , Rim Cefálico/efeitos dos fármacos , Rim Cefálico/imunologia , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/genética , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Polifenóis/administração & dosagem , Salmo salar/genética , Triterpenos/administração & dosagem
3.
Front Immunol ; 12: 695973, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220858

RESUMO

Aquaculture growth will unavoidably involve the implementation of innovative and sustainable production strategies, being functional feeds among the most promising ones. A wide spectrum of phytogenics, particularly those containing terpenes and organosulfur compounds, are increasingly studied in aquafeeds, due to their growth promoting, antimicrobial, immunostimulant, antioxidant, anti-inflammatory and sedative properties. This trend relies on the importance of the mucosal barrier in the fish defense. Establishing the phytogenics' mode of action in mucosal tissues is of importance for further use and safe administration. Although the impact of phytogenics upon fish mucosal immunity has been extensively approached, most of the studies fail in addressing the mechanisms underlying their pharmacological effects. Unstandardized testing as an extended practice also questions the reproducibility and safety of such studies, limiting the use of phytogenics at commercial scale. The information presented herein provides insight on the fish mucosal immune responses to phytogenics, suggesting their mode of action, and ultimately encouraging the practice of reliable and reproducible research for novel feed additives for aquafeeds. For proper screening, characterization and optimization of their mode of action, we encourage the evaluation of purified compounds using in vitro systems before moving forward to in vivo trials. The formulation of additives with combinations of compounds previously characterized is recommended to avoid bacterial resistance. To improve the delivery of phytogenics and overcome limitations associated to compounds volatility and susceptibility to degradation, the use of encapsulation is advisable. Besides, newer approaches and dedicated methodologies are needed to elucidate the phytogenics pharmacokinetics and mode of action in depth.


Assuntos
Ração Animal , Suplementos Nutricionais , Pesqueiros , Peixes/imunologia , Sistema Imunitário/efeitos dos fármacos , Imunidade nas Mucosas/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia , Animais , Peixes/crescimento & desenvolvimento , Peixes/metabolismo , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Compostos Fitoquímicos/imunologia , Transdução de Sinais
4.
Front Immunol ; 12: 693613, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34295335

RESUMO

ß-glucans are prebiotic and/or food additives used by the aquaculture industry to enhance the immune response of fish. Their efficiency may vary according to their origin and structure. In this study, the immunostimulant effects of two ß-glucan types extracted from wild-type baker's yeast (Saccharomyces cerevisiae) and its null-mutant Gas1 were investigated. Gas1 has a beta-1,3-glucanosyltransferase activity necessary for cell wall assembly. Using a positive (commercial product MacroGard®) and a negative control (a diet without glucans), we evaluated the immune responses and disease resistance of rainbow trout juveniles (mean weight, ~44 g) fed control, low (0.2%) and high (0.5%) doses of Macrogard®, Gas1, and Wild type-ß-glucan after a short-term (15 days, D15) or mid-term (36 days, D36) feeding periods. We found that ß-glucan supplemented diets did not affect growth performance, mortality, splenic index, or leukocyte respiratory burst activity on D15 nor D36. However, each ß-glucan triggered different immune effectors, depending of the doses or length of exposure compared to others and/or the negative control. Indeed, high dose of MacroGard® significantly increased lysozyme activities at D15 compared with the control and other diets (p<0.05). At D36, MacroGard ß-glucan enhanced the production of lymphocytes in comparison with the control diet (p<0.05). Regarding WT ß-glucan, at D36, WT-ß-glucan, especially the high dose, provided the highest enzymatic activities (lysozyme and ACH50) and Ig level (p<0.01). Furthermore, on D36, Gas1 also increased lysozyme activity, Ig proportion, and some immune genes (mcsfra, hepcidin) compared with MacroGard® (p<0.05). Besides, both doses of Gas1-ß-glucans increased the resistance of juveniles to bacterial infection highlighted by a higher survival rate at 14 days post-challenge compared with the control and other types and doses of ß-glucans (p<0.05). In conclusion, our results suggest that Gas1-ß-glucan could represent a promising immunostimulant that would help to prevent diseases in aquaculture even more efficiently than other ß-glucans already in use. Mode of action and particular efficiency of this new Gas1 mutant are debated.


Assuntos
Adjuvantes Imunológicos/farmacologia , Aeromonas salmonicida/patogenicidade , Suplementos Nutricionais , Furunculose/prevenção & controle , Infecções por Bactérias Gram-Negativas/veterinária , Oncorhynchus mykiss/microbiologia , beta-Glucanas/farmacologia , Aeromonas salmonicida/imunologia , Ração Animal , Animais , Peptídeos Catiônicos Antimicrobianos/metabolismo , Pesqueiros , Furunculose/imunologia , Furunculose/microbiologia , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/prevenção & controle , Imunidade Humoral/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Leucócitos/efeitos dos fármacos , Leucócitos/imunologia , Leucócitos/metabolismo , Oncorhynchus mykiss/imunologia , Oncorhynchus mykiss/metabolismo , Fatores de Tempo
5.
Front Immunol ; 12: 670279, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34054843

RESUMO

The inclusion of a medicinal plant leaf extract (MPLE) from sage (Salvia officinalis) and lemon verbena (Lippia citriodora), rich in verbascoside and triterpenic compounds like ursolic acid, was evaluated in gilthead seabream (Sparus aurata) fed a low fishmeal-based diet (48% crude protein, 17% crude fat, 21.7 MJ kg-1, 7% fishmeal, 15% fish oil) for 92 days. In particular, the study focused on the effect of these phytogenic compounds on the gut condition by analyzing the transcriptomic profiling (microarray analysis) and histological structure of the intestinal mucosa, as well as the histochemical properties of mucins stored in goblet cells. A total number of 506 differentially expressed genes (285 up- and 221 down-regulated) were found when comparing the transcriptomic profiling of the intestine from fish fed the control and MPLE diets. The gut transcripteractome revealed an expression profile that favored biological mechanisms associated to the 1) immune system, particularly involving T cell activation and differentiation, 2) gut integrity (i.e., adherens and tight junctions) and cellular proliferation, and 3) cellular proteolytic pathways. The histological analysis showed that the MPLE dietary supplementation promoted an increase in the number of intestinal goblet cells and modified the composition of mucins' glycoproteins stored in goblet cells, with an increase in the staining intensity of neutral mucins, as well as in mucins rich in carboxylated and weakly sulfated glycoconjugates, particularly those rich in sialic acid residues. The integration of transcriptomic and histological results showed that the evaluated MPLE from sage and lemon verbena is responsible for the maintenance of intestinal health, supporting gut homeostasis and increasing the integrity of the intestinal epithelium, which suggests that this phytogenic may be considered as a promising sustainable functional additive for aquafeeds.


Assuntos
Imunidade nas Mucosas/efeitos dos fármacos , Fatores Imunológicos/farmacologia , Junções Intercelulares/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Extratos Vegetais/farmacologia , Salvia officinalis , Dourada , Linfócitos T/efeitos dos fármacos , Verbenaceae , Junções Aderentes/efeitos dos fármacos , Junções Aderentes/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Células Caliciformes/efeitos dos fármacos , Células Caliciformes/imunologia , Células Caliciformes/metabolismo , Fatores Imunológicos/isolamento & purificação , Junções Intercelulares/metabolismo , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Mucinas/metabolismo , Permeabilidade/efeitos dos fármacos , Extratos Vegetais/isolamento & purificação , Folhas de Planta , Salvia officinalis/química , Dourada/genética , Dourada/imunologia , Dourada/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo , Transcriptoma , Verbenaceae/química
6.
Front Immunol ; 12: 633621, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33777020

RESUMO

One of the main targets for the use of phytogenics in aquafeeds is the mucosal tissues as they constitute a physical and biochemical shield against environmental and pathogenic threats, comprising elements from both the innate and acquired immunity. In the present study, the modulation of the skin transcriptional immune response, the bacterial growth capacity in skin mucus, and the overall health condition of gilthead seabream (Sparus aurata) juveniles fed a dietary supplementation of garlic essential oil, carvacrol, and thymol were assessed. The enrichment analysis of the skin transcriptional profile of fish fed the phytogenic-supplemented diet revealed the regulation of genes associated to cellular components involved in the secretory pathway, suggesting the stimulation, and recruitment of phagocytic cells. Genes recognized by their involvement in non-specific immune response were also identified in the analysis. The promotion of the secretion of non-specific immune molecules into the skin mucus was proposed to be involved in the in vitro decreased growth capacity of pathogenic bacteria in the mucus of fish fed the phytogenic-supplemented diet. Although the mucus antioxidant capacity was not affected by the phytogenics supplementation, the regulation of genes coding for oxidative stress enzymes suggested the reduction of the skin oxidative stress. Additionally, the decreased levels of cortisol in mucus indicated a reduction in the fish allostatic load due to the properties of the tested additive. Altogether, the dietary garlic, carvacrol, and thymol appear to promote the gilthead seabream skin innate immunity and the mucus protective capacity, decreasing its susceptibility to be colonized by pathogenic bacteria.


Assuntos
Imunidade Inata/efeitos dos fármacos , Muco/metabolismo , Óleos Voláteis/farmacologia , Dourada/imunologia , Via Secretória/efeitos dos fármacos , Pele/efeitos dos fármacos , Ração Animal/análise , Animais , Aquicultura , Cimenos/química , Cimenos/farmacologia , Suplementos Nutricionais/análise , Alho/química , Imunidade Inata/genética , Imunidade nas Mucosas/efeitos dos fármacos , Muco/efeitos dos fármacos , Muco/microbiologia , Óleos Voláteis/classificação , Dourada/genética , Via Secretória/imunologia , Timol/química , Timol/farmacologia
7.
Front Immunol ; 12: 625297, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33746962

RESUMO

Essential oils (EOs) are promising alternatives to chemotherapeutics in animal production due to their immunostimulant, antimicrobial, and antioxidant properties, without associated environmental or hazardous side effects. In the present study, the modulation of the transcriptional immune response (microarray analysis) and microbiota [16S Ribosomal RNA (rRNA) sequencing] in the intestine of the euryhaline fish gilthead seabream (Sparus aurata) fed a dietary supplementation of garlic, carvacrol, and thymol EOs was evaluated. The transcriptomic functional analysis showed the regulation of genes related to processes of proteolysis and inflammatory modulation, immunity, transport and secretion, response to cyclic compounds, symbiosis, and RNA metabolism in fish fed the EOs-supplemented diet. Particularly, the activation of leukocytes, such as acidophilic granulocytes, was suggested to be the primary actors of the innate immune response promoted by the tested functional feed additive in the gut. Fish growth performance and gut microbiota alpha diversity indices were not affected, while dietary EOs promoted alterations in bacterial abundances in terms of phylum, class, and genus. Subtle, but significant alterations in microbiota composition, such as the decrease in Bacteroidia and Clostridia classes, were suggested to participate in the modulation of the intestine transcriptional immune profile observed in fish fed the EOs diet. Moreover, regarding microbiota functionality, increased bacterial sequences associated with glutathione and lipid metabolisms, among others, detected in fish fed the EOs supported the metabolic alterations suggested to potentially affect the observed immune-related transcriptional response. The overall results indicated that the tested dietary EOs may promote intestinal local immunity through the impact of the EOs on the host-microbial co-metabolism and consequent regulation of significant biological processes, evidencing the crosstalk between gut and microbiota in the inflammatory regulation upon administration of immunostimulant feed additives.


Assuntos
Bactérias/efeitos dos fármacos , Suplementos Nutricionais , Microbioma Gastrointestinal/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Imunidade nas Mucosas/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Óleos Voláteis/administração & dosagem , Dourada , Transcriptoma/efeitos dos fármacos , Compostos Alílicos/administração & dosagem , Ração Animal , Animais , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Cimenos/administração & dosagem , Dieta , Combinação de Medicamentos , Perfilação da Expressão Gênica , Redes Reguladoras de Genes/efeitos dos fármacos , Imunidade Inata/genética , Imunidade nas Mucosas/genética , Intestinos/imunologia , Intestinos/microbiologia , Análise de Sequência com Séries de Oligonucleotídeos , Ribotipagem , Dourada/genética , Dourada/imunologia , Dourada/metabolismo , Dourada/microbiologia , Sulfetos/administração & dosagem , Timol/administração & dosagem
8.
Sci Rep ; 10(1): 17764, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33082387

RESUMO

A microencapsulated feed additive composed by garlic, carvacrol and thymol essential oils (EOs) was evaluated regarding its protective effect in gills parasitized by Sparicotyle chrysophrii in Sparus aurata. A nutritional trial (65 days) followed by a cohabitation challenge with parasitized fish (39 days) were performed. Transcriptomic analysis by microarrays of gills of fish fed the EOs diet showed an up-regulation of genes related to biogenesis, vesicular transport and exocytosis, leukocyte-mediated immunity, oxidation-reduction and overall metabolism processes. The functional network obtained indicates a tissue-specific pro-inflammatory immune response arbitrated by degranulating acidophilic granulocytes, sustained by antioxidant and anti-inflammatory responses. The histochemical study of gills also showed an increase of carboxylate glycoproteins containing sialic acid in mucous and epithelial cells of fish fed the EOs diet, suggesting a mucosal defence mechanism through the modulation of mucin secretions. The outcomes of the in vivo challenge supported the transcriptomic results obtained from the nutritional trial, where a significant reduction of 78% in the abundance of S. chrysophrii total parasitation and a decrease in the prevalence of most parasitic developmental stages evaluated were observed in fish fed the EOs diet. These results suggest that the microencapsulation of garlic, carvacrol and thymol EOs could be considered an effective natural dietary strategy with antiparasitic properties against the ectoparasite S. chrysophrii.


Assuntos
Antiparasitários/uso terapêutico , Suplementos Nutricionais , Doenças dos Peixes/tratamento farmacológico , Doenças dos Peixes/parasitologia , Brânquias/parasitologia , Óleos Voláteis/uso terapêutico , Dourada/parasitologia , Animais , Antiparasitários/administração & dosagem , Dieta , Doenças dos Peixes/genética , Perfilação da Expressão Gênica , Brânquias/metabolismo , Óleos Voláteis/administração & dosagem , Dourada/genética , Transcriptoma , Regulação para Cima/efeitos dos fármacos
9.
Fish Shellfish Immunol ; 74: 250-259, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29305990

RESUMO

Salmon farming may face stress due to the intensive culture conditions with negative impacts on overall performance. In this aspect, functional feed improves not only the basic nutritional requirements but also the health status and fish growth. However, to date no studies have been carried out to evaluate the effect of functional diets in salmon subjected to crowding stress. Thus, the aim of this study was to evaluate the effect of yeast extract (Xanthophyllomyces dendrorhous; diet A) and the combination of plant extracts (common Saint John's wort, lemon balm, and rosemary; diet B) on the antioxidant and immune status of Atlantic salmon grown under normal cultured conditions and then subjected to crowding stress. Fish were fed with functional diets during 30 days (12 kg/m3) and then subjected to crowding stress (20 kg/m3) for 10 days. The lipid peroxidation in gut showed that both diets induced a marked decrease on oxidative damage when fish were subjected to crowding stress. The protein carbonylation in muscle displayed at day 30 a marked decrease in both functional diets that was more marked on the stress condition. The expression of immune markers (IFNγ, CD4, IL-10, TGF-ß, IgMmb, IgMsec, T-Bet, and GATA-3) indicated the upregulation of those associated to humoral-like response (CD4, IL-10, GATA-3) when fish were subjected to crowding stress. These results were confirmed with the expression of secreted IgM. Altogether, these functional diets improved the antioxidant status and increased the expression of genes related to Th2-like response suggesting a protective role on fish subjected to crowding stress.


Assuntos
Basidiomycota/química , Aglomeração , Hypericum/química , Melissa/química , Rosmarinus/química , Salmo salar/fisiologia , Ração Animal/análise , Animais , Antioxidantes/metabolismo , Dieta/veterinária , Suplementos Nutricionais/análise , Imunidade Inata/efeitos dos fármacos , Extratos Vegetais/química , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA