Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 11(3)2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33802441

RESUMO

The use of magnetic nanoparticles in hyperthermia, that is, heating induced by alternating magnetic fields, is gaining interest as a non-invasive, free of side effects technique that can be considered as a co-adjuvant of other cancer treatments. Having sufficient control on the field characteristics, within admissible limits, the focus is presently on the magnetic material. In the present contribution, no attempt has been made of using other composition than superparamagnetic iron oxide nanoparticles (SPION), or of applying surface functionalization, which opens a wider range of choices. We have used a hydrothermal synthesis route that allows preparing SPION nanoparticles in the 40 nm size range, with spherical, cuboidal or rod-like shapes, by minor changes in the synthesis steps. The three kinds of particles (an attempt to produce star-shaped colloids yielded hematite) were demonstrated to have the magnetite (or maghemite) crystallinity. Magnetization cycles showed virtually no hysteresis and demonstrated the superparamagnetic nature of the particles, cuboidal ones displaying saturation magnetization comparable to bulk magnetite, followed by rods and spheres. The three types were used as hyperthermia agents using magnetic fields of 20 kA/m amplitude and frequency in the range 136-205 kHz. All samples demonstrated to be able to raise the solution temperature from room values to 45 °C in a mere 60 s. Not all of them performed the same way, though. Cuboidal magnetic nanoparticles (MNPs) displayed the maximum heating power (SAR or specific absorption rate), ranging in fact among the highest reported with these geometries and raw magnetite composition.

2.
Int J Nanomedicine ; 10: 3897-909, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26089666

RESUMO

Natural products using plants have received considerable attention because of their potential to treat various diseases. Arrabidaea chica (Humb. & Bonpl.) B. Verlot is a native tropical American vine with healing properties employed in folk medicine for wound healing, inflammation, and gastrointestinal colic. Applying nanotechnology to plant extracts has revealed an advantageous strategy for herbal drugs considering the numerous features that nanostructured systems offer, including solubility, bioavailability, and pharmacological activity enhancement. The present study reports the preparation and characterization of chitosan-sodium tripolyphosphate nanoparticles (NPs) charged with A. chica standardized extract (AcE). Particle size and zeta potential were measured using a Zetasizer Nano ZS. The NP morphological characteristics were observed using scanning electron microscopy. Our studies indicated that the chitosan/sodium tripolyphosphate mass ratio of 5 and volume ratio of 10 were found to be the best condition to achieve the lowest NP sizes, with an average hydrodynamic diameter of 150±13 nm and a zeta potential of +45±2 mV. Particle size decreased with AcE addition (60±10.2 nm), suggesting an interaction between the extract's composition and polymers. The NP biocompatibility was evaluated using human skin fibroblasts. AcE-NP demonstrated capability of maintaining cell viability at the lowest concentrations tested, stimulating cell proliferation at higher concentrations. Antiulcerogenic activity of AcE-NP was also evaluated with an acute gastric ulcer experimental model induced by ethanol and indomethacin. NPs loaded with A. chica extract reduced the ulcerative lesion index using lower doses compared with the free extract, suggesting that extract encapsulation in chitosan NPs allowed for a dose reduction for a gastroprotective effect. The AcE encapsulation offers an approach for further application of the A. chica extract that could be considered a potential candidate for ulcer-healing pharmaceutical systems.


Assuntos
Bignoniaceae/química , Quitosana/química , Portadores de Fármacos/química , Nanopartículas/química , Extratos Vegetais/farmacologia , Polifosfatos/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Etanol/efeitos adversos , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Indometacina/efeitos adversos , Masculino , Tamanho da Partícula , Compostos Fitoquímicos , Ratos , Ratos Wistar , Pele/citologia , Pele/efeitos dos fármacos , Pele/metabolismo , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA