Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 28(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38005324

RESUMO

Nowadays, bee products are commended by consumers for their medicinal and dietary properties. This study aimed to differentiate between monofloral bee pollens originating from Portugal using phenolic and volatile profiles and investigate their antioxidant and cytotoxic activity. Total phenolic and flavonoid compounds were recorded between 2.9-35.8 mg GAE/g and 0.7-4.8 mg QE/g, respectively. The LC/DAD/ESI-MSn analytical results allowed us to identify and quantify a total of 72 compounds, including phenolic and phenylamide compounds, whereas GC-MS results revealed the presence of 49 different compounds, mostly ketones, aldehydes, esters, hydrocarbons, and terpenes. The highest DPPH• radical scavenging activity, EC50: 0.07 mg/mL, was recorded in the sample dominated by Castanae sp. pollen, whereas the Rubus sp. (1.59 mM Trolox/mg) and Cistaceae sp. (0.09 mg GAE/g) pollen species exhibited the highest antioxidant activity in ABTS•+ and reducing power assays, respectively. Regarding the anti-carcinogenic activity, only Carduus sp. showed remarkable cytotoxic potential against MCF-7.


Assuntos
Antioxidantes , Fenóis , Abelhas , Animais , Portugal , Fenóis/análise , Antioxidantes/farmacologia , Flavonoides , Pólen/química
2.
Molecules ; 28(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36677892

RESUMO

Bee pollen is frequently characterized as a natural source of bioactive components, such as phenolic compounds, which are responsible for its pharmaceutical potential and nutritional properties. In this study, we evaluated the bioactive compound contents of mono- and polyfloral bee pollen samples using spectroscopic and chromatographic methods and established links with their antioxidant and antitumor activity. The findings demonstrated that the botanical origin of bee pollen has a remarkable impact on its phenolic (3-17 mg GAE/g) and flavonoid (0.5-3.2 mg QE/g) contents. Liquid chromatography-mass spectrometry analysis revealed the presence of 35 phenolic and 13 phenylamide compounds in bee pollen, while gas chromatography-mass spectrometry showed its richness in volatiles, such as hydrocarbons, fatty acids, alcohols, ketones, etc. The concentration of bioactive compounds in each sample resulted in a substantial distinction in their antioxidant activity, DPPH (EC50: 0.3-0.7 mg/mL), ABTS (0.8-1.3 mM Trolox/mg), and reducing power (0.03-0.05 mg GAE/g), with the most bioactive pollens being the monofloral samples from Olea europaea and Ononis spinosa. Complementarily, some samples revealed a moderate effect on cervical carcinoma (GI50: 495 µg/mL) and breast adenocarcinoma (GI50: 734 µg/mL) cell lines. This may be associated with compounds such as quercetin-O-diglucoside and kaempferol-3-O-rhamnoside, which are present in pollens from Olea europaea and Coriandrum, respectively. Overall, the results highlighted the potentiality of bee pollen to serve health-promoting formulations in the future.


Assuntos
Antioxidantes , Flavonoides , Animais , Abelhas , Antioxidantes/química , Flavonoides/química , Cromatografia Gasosa-Espectrometria de Massas , Espectrometria de Massas , Fenóis/química , Pólen/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA