Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Pollut ; 302: 119062, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35231537

RESUMO

Lead is a metal that exists naturally in the Earth's crust and is a ubiquitous environmental contaminant. The alleviation of lead toxicity is important to keep human health under lead exposure. Biosynthesized selenium nanoparticle (SeNPs) and selenium-enriched Lactobacillus rhamnosus SHA113 (Se-LRS) were developed in this study, and their potentials in alleviating lead-induced injury to the liver and intestinal tract were evaluated in mice by oral administration for 4 weeks. As results, oral intake of lead acetate (150 mg/kg body weight per day) caused more than 50 times and 100 times lead accumulation in blood and the liver, respectively. Liver function was seriously damaged by the lead exposure, which is indicated as the significantly increased lipid accumulation in the liver, enhanced markers of liver function injury in serum, and occurrence of oxidative stress in liver tissues. Serious injury in intestinal tract was also found under lead exposure, as shown by the decrease of intestinal microbiota diversity and occurrence of oxidative stress. Except the lead content in blood and the liver were lowered by 52% and 58%, respectively, oral administration of Se-LRS protected all the other lead-induced injury markers to the normal level. By the comparison with the effects of normal L. rhamnosus SHA113 and the SeNPs isolated from Se-LRS, high protective effects of Se-LRS can be explained as the extremely high efficiency to promote lead excretion via feces by forming insoluble mixture. These findings illustrate the developed selenium-enriched L. rhamnosus can efficiently protect the liver and intestinal tract from injury by lead.


Assuntos
Enteropatias , Lacticaseibacillus rhamnosus , Selênio , Animais , Chumbo/toxicidade , Fígado , Camundongos , Selênio/farmacologia
2.
Molecules ; 27(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35268699

RESUMO

Previous studies have reported that recombinant tumor necrosis factor (TNF)-α has powerful antiviral activity but severe systematic side effects. Jasminin is a common bioactive component found in Chinese herbal medicine beverage "Jasmine Tea". Here, we report that jasminin-induced endogenous TNF-α showed antiviral activity in vitro. The underlying TNF-α-inducing action of jasminin was also investigated in RAW264.7 cells. The level of endogenous TNF-α stimulated by jasminin was first analyzed by an enzyme-linked immunosorbent assay (ELISA) from the cell culture supernatant of RAW264.7 cells. The supernatants were then collected to investigate the potential antiviral effect against herpes simplex virus 1 (HSV-1). The antiviral effects of jasminin alone or its supernatants were evaluated by a plaque reduction assay. The potential activation of the PI3K-Akt pathway, three main mitogen-activated protein kinases (MAPKs), and nuclear factor (NF)-κB signaling pathways that induce TNF-α production were also investigated. Jasminin induces TNF-α protein expression in RAW264.7 cells without additional stimuli 10-fold more than the control. No significant up-expression of type I, II, and III interferons; interleukins 2 and 10; nor TNF-ß were observed by the jasminin stimuli. The supernatants, containing jasminin-induced-TNF-α, showed antiviral activity against HSV-1. The jasminin-stimulated cells caused the simultaneous activation of the Akt, MAPKs, and NF-κB signal pathways. Furthermore, the pretreatment of the cells with the Akt, MAPKs, and NF-κB inhibitors effectively suppressed jasminin-induced TNF-α production. Our research provides evidence that endogenous TNF-α can be used as a strategy to encounter viral infections. Additionally, the Akt, MAPKs, and NF-κB signaling pathways are involved in the TNF-α synthesis that induced by jasminin.


Assuntos
Fosfatidilinositol 3-Quinases , Fator de Necrose Tumoral alfa , Antivirais/farmacologia , Lipopolissacarídeos/farmacologia , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
3.
Nat Prod Res ; 36(4): 974-983, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33251874

RESUMO

Eleven compounds were isolated from methanol extract taken from Moringa oleifera seeds, including two previously unknown and nine known compounds. These compounds were authenticated as a carbamate, three phenylglycosides, four phenol glycosides, two nucleosides, and one flavonoid. Their chemical structures were elucidated using 1 D/2D nuclear magnetic resonance and high resolution-MS. Antivirus activity analyses revealed that Moringa A, glucomoringin, and Vitexin possessed strong inhibitory effects against the H1N1 virus, having IC50 values in the range of IC50 = 0.26 ± 0.03, 0.98 ± 0.17, and 3.42 ± 0.37 µg/mL, respectively. Furthermore, these three compounds could decrease the levels of TNF-α, IL-6, and IL-1ß, which occur in hosts because of H1N1 infections.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Moringa oleifera , Anti-Inflamatórios , Antivirais/farmacologia , Moringa oleifera/química , Extratos Vegetais/química , Sementes/química
4.
Crit Rev Biotechnol ; 40(3): 365-379, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31948287

RESUMO

Chitosan, obtained as a result of the deacetylation of chitin, one of the most important naturally occurring polymers, has antimicrobial properties against fungi, and bacteria. It is also useful in other fields, including: food, biomedicine, biotechnology, agriculture, and the pharmaceutical industries. A literature survey shows that its antimicrobial activity depends upon several factors such as: the pH, temperature, molecular weight, ability to chelate metals, degree of deacetylation, source of chitosan, and the type of microorganism involved. This review will focus on the in vitro and in vivo antimicrobial properties of chitosan and its derivatives, along with a discussion on its mechanism of action during the treatment of infectious animal diseases, as well as its importance in food safety. We conclude with a summary of the challenges associated with the uses of chitosan and its derivatives.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Quitina/química , Quitosana/química , Quitosana/farmacologia , Doenças dos Animais/tratamento farmacológico , Animais , Bactérias/efeitos dos fármacos , Biotecnologia , Bovinos , Terapia por Quelação , Indústria Alimentícia , Inocuidade dos Alimentos , Fungos , Concentração de Íons de Hidrogênio , Ostreidae/efeitos dos fármacos , Temperatura , Indústria Têxtil
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA