Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Cell Rep ; 40(5): 871-880, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33772600

RESUMO

KEY MESSAGE: The effects of selenium in rice grain composition depend on the soil nitrogen supply. Selenium and nitrogen have the potential to modify rice grain composition; however, it is unclear how the combined effect of Se and nitrogen affects the grain nutritional quality of rice. In our study, grain Se concentration was positively associated with the increased availability of nitrogen in soil. The accumulation of Se in grain of rice plants treated with Se combined with nitrogen was accompanied by an increase in expression of NRT1.1B, a rice nitrate transporter and sensor, in root. Moreover, Se potentiates the response of nitrogen supply in expression of sulfate transporter OsSULTR1.2, phosphate transporter OsPT2 and silicon transporter OsNIP2.1 in root, thereby increasing root Se uptake capacity. The combination of Se with high nitrogen increased the concentrations of protein, carbohydrates, Se, Mo and Mg, but decreased concentrations of Fe, Mn, Cu and Zn in grain. Overall, our results revealed that many of the effects of Se in rice grain composition are due to a shift in the nitrogen status of the plant.


Assuntos
Oryza/metabolismo , Selênio/metabolismo , Cobre/metabolismo , Grão Comestível/metabolismo , Nitrogênio/metabolismo , Oryza/genética , Zinco/metabolismo
2.
Planta ; 250(1): 333-345, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31030327

RESUMO

MAIN CONCLUSION: Selenium modulates the formation of primary and lateral roots through alterations in auxin and ethylene, leading to new patterns of root architecture in rice seedlings. Selenium (Se) at low concentrations can control root growth through interaction with hormone biosynthesis. Auxin and ethylene have been shown to control the root architecture, with most of the information obtained from the eudicots such Arabidopsis and Nicotiana tabacum. Here, we presented the effects of Se on auxin and ethylene pathways and examined their impact on primary metabolism and root system architecture in rice (Oryza sativa L.) seedlings. Se treatment increased elongation of primary root, but decreased the number and length of lateral roots. Se led to decreased expression of genes associated with the biosynthesis of auxin and ethylene, concomitantly with reduced production of these hormones by the roots. Moreover, Se decreased the abundance of transcripts encoding auxin transport proteins. Indole-3-acetic acid (IAA) treatment overrode the repressive effect of Se on lateral root growth. The ethylene synthesis inhibitor L-α-(2-aminoethoxyvinyl)-glycine (AVG) increased elongation of primary root, whereas the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) resulted in the opposite effect. Soluble sugars accumulate in roots of rice seedlings under Se treatment. Thus, Se modulates the formation of primary and lateral roots through alterations in auxin and ethylene, leading to new patterns of root architecture in rice seedlings.


Assuntos
Ácidos Indolacéticos/farmacologia , Oryza/efeitos dos fármacos , Reguladores de Crescimento de Plantas/metabolismo , Selênio/farmacologia , Transporte Biológico , Regulação para Baixo/efeitos dos fármacos , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ácidos Indolacéticos/metabolismo , Oryza/anatomia & histologia , Oryza/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Plântula/anatomia & histologia , Plântula/genética , Plântula/metabolismo
3.
Plant Cell Environ ; 39(10): 2235-46, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27342381

RESUMO

Although Selenium (Se) stress is relatively well known for causing growth inhibition, its effects on primary metabolism remain rather unclear. Here, we characterized both the modulation of the expression of specific genes and the metabolic adjustments in Arabidopsis thaliana in response to changes in Se level in the soil. Se treatment culminated with strong inhibition of both shoot and root growth. Notably, growth inhibition in Se-treated plants was associated with an incomplete mobilization of starch during the night. Minor changes in amino acids levels were observed in shoots and roots of plants treated with Se whereas the pool size of tricarboxylic acid (TCA) cycle intermediates in root was not altered in response to Se. By contrast, decreased levels of organic acids involved in the first part of the TCA cycle were observed in shoots of Se-treated plants. Furthermore, decreased expression levels of expansins and endotransglucosylases/endohydrolases (XHTs) genes were observed after Se treatment, coupled with a significant decrease in the levels of essential elements. Collectively, our results revealed an exquisite interaction between energy metabolism and Se-mediated control of growth in Arabidopsis thaliana to coordinate cell wall extension, starch turnover and the levels of a few essential nutrients.


Assuntos
Arabidopsis/efeitos dos fármacos , Selênio/farmacologia , Estresse Fisiológico , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Carbono/metabolismo , Parede Celular/metabolismo , Ciclo do Ácido Cítrico , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA