Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Neuro Oncol ; 25(11): 1932-1946, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37326042

RESUMO

Glioblastoma (GBM) is the most prevalent malignant primary brain tumor, accounting for 14.2% of all diagnosed tumors and 50.1% of all malignant tumors, and the median survival time is approximately 8 months irrespective of whether a patient receives treatment without significant improvement despite expansive research (Ostrom QT, Price M, Neff C, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2015-2019. Neurooncology. 2022; 24(suppl 5):v1-v95.). Recently, important roles for the circadian clock in GBM tumorigenesis have been reported. Positive regulators of circadian-controlled transcription, brain and muscle ARNT-like 1 (BMAL1), and circadian locomotor output cycles kaput (CLOCK), are highly expressed also in GBM and correlated with poor patient prognosis. BMAL1 and CLOCK promote the maintenance of GBM stem cells (GSCs) and the establishment of a pro-tumorigenic tumor microenvironment (TME), suggesting that targeting the core clock proteins may augment GBM treatment. Here, we review findings that highlight the critical role the circadian clock plays in GBM biology and the strategies by which the circadian clock can be leveraged for GBM treatment in the clinic moving forward.


Assuntos
Relógios Circadianos , Glioblastoma , Humanos , Proteínas CLOCK/metabolismo , Fatores de Transcrição ARNTL/metabolismo , Encéfalo/metabolismo , Microambiente Tumoral
2.
Int J Health Plann Manage ; 34(1): 241-250, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30109902

RESUMO

Primary care redesign for older adult patients is currently ongoing in countries with aging populations. One of the main challenges of this type of transformations is how to estimate implementation costs in different types of health care delivery organizations. This study compares start-up and incremental expenses of implementing a primary care redesign across 2 organization types: integrated group (n = 31) practices and independent practice association (IPA) sites (n = 213). Administrators involved with implementing the redesign completed a cost capture template to quantifying expenses. The potential impact of measurement error, recollection bias, and implementation models across sites and geographic regions was examined in sensitivity analyses. Marginal start-up and incremental expenses were higher for Group sites ($122-$328) compared to IPA sites ($31-$227). Group and IPA sites, however, implemented the redesign with different intensities. According to our analyses, if IPA sites implemented the redesign with the same intensity as Group sites, marginal costs would have been $5 to $13 higher for IPA sites than for Group sites. This study shows how a flexible approach to estimate the cost of a wellness care redesign is needed when the intensity of the transformation differs across 2 different types of health care organizations.


Assuntos
Organizações de Assistência Responsáveis , Custos e Análise de Custo/métodos , Prática de Grupo , Promoção da Saúde/economia , Atenção Primária à Saúde/economia , Prática Privada , Idoso , Prestação Integrada de Cuidados de Saúde , Humanos , Estados Unidos
3.
Sci Transl Med ; 10(443)2018 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-29848664

RESUMO

Glioblastoma (GBM) is the most lethal primary brain tumor and is highly resistant to current treatments. GBM harbors glioma stem cells (GSCs) that not only initiate and maintain malignant growth but also promote therapeutic resistance including radioresistance. Thus, targeting GSCs is critical for overcoming the resistance to improve GBM treatment. Because the bone marrow and X-linked (BMX) nonreceptor tyrosine kinase is preferentially up-regulated in GSCs relative to nonstem tumor cells and the BMX-mediated activation of the signal transducer and activator of transcription 3 (STAT3) is required for maintaining GSC self-renewal and tumorigenic potential, pharmacological inhibition of BMX may suppress GBM growth and reduce therapeutic resistance. We demonstrate that BMX inhibition by ibrutinib potently disrupts GSCs, suppresses GBM malignant growth, and effectively combines with radiotherapy. Ibrutinib markedly disrupts the BMX-mediated STAT3 activation in GSCs but shows minimal effect on neural progenitor cells (NPCs) lacking BMX expression. Mechanistically, BMX bypasses the suppressor of cytokine signaling 3 (SOCS3)-mediated inhibition of Janus kinase 2 (JAK2), whereas NPCs dampen the JAK2-mediated STAT3 activation via the negative regulation by SOCS3, providing a molecular basis for targeting BMX by ibrutinib to specifically eliminate GSCs while preserving NPCs. Our preclinical data suggest that repurposing ibrutinib for targeting GSCs could effectively control GBM tumor growth both as monotherapy and as adjuvant with conventional therapies.


Assuntos
Glioma/patologia , Células-Tronco Neoplásicas/patologia , Proteínas Tirosina Quinases/metabolismo , Pirazóis/farmacologia , Pirimidinas/farmacologia , Tolerância a Radiação , Fator de Transcrição STAT3/metabolismo , Adenina/análogos & derivados , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Terapia Combinada , Receptor gp130 de Citocina/metabolismo , Glioma/terapia , Janus Quinase 2/metabolismo , Camundongos , Modelos Biológicos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Piperidinas , Ligação Proteica/efeitos dos fármacos , Tolerância a Radiação/efeitos dos fármacos , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Análise de Sobrevida , Temozolomida/farmacologia , Temozolomida/uso terapêutico
4.
Nature ; 547(7663): 355-359, 2017 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-28678782

RESUMO

Glioblastoma is a universally lethal cancer with a median survival time of approximately 15 months. Despite substantial efforts to define druggable targets, there are no therapeutic options that notably extend the lifespan of patients with glioblastoma. While previous work has largely focused on in vitro cellular models, here we demonstrate a more physiologically relevant approach to target discovery in glioblastoma. We adapted pooled RNA interference (RNAi) screening technology for use in orthotopic patient-derived xenograft models, creating a high-throughput negative-selection screening platform in a functional in vivo tumour microenvironment. Using this approach, we performed parallel in vivo and in vitro screens and discovered that the chromatin and transcriptional regulators needed for cell survival in vivo are non-overlapping with those required in vitro. We identified transcription pause-release and elongation factors as one set of in vivo-specific cancer dependencies, and determined that these factors are necessary for enhancer-mediated transcriptional adaptations that enable cells to survive the tumour microenvironment. Our lead hit, JMJD6, mediates the upregulation of in vivo stress and stimulus response pathways through enhancer-mediated transcriptional pause-release, promoting cell survival specifically in vivo. Targeting JMJD6 or other identified elongation factors extends survival in orthotopic xenograft mouse models, suggesting that targeting transcription elongation machinery may be an effective therapeutic strategy for glioblastoma. More broadly, this study demonstrates the power of in vivo phenotypic screening to identify new classes of 'cancer dependencies' not identified by previous in vitro approaches, and could supply new opportunities for therapeutic intervention.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Terapia de Alvo Molecular/tendências , Fatores de Elongação da Transcrição/antagonistas & inibidores , Fatores de Elongação da Transcrição/metabolismo , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Cromatina/metabolismo , Elementos Facilitadores Genéticos/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Glioblastoma/patologia , Humanos , Histona Desmetilases com o Domínio Jumonji/antagonistas & inibidores , Histona Desmetilases com o Domínio Jumonji/metabolismo , Masculino , Camundongos , Interferência de RNA , Transcrição Gênica , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Cancer Res ; 75(8): 1760-9, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25712125

RESUMO

Glioma stem-like cells (GSC) are a subpopulation of cells in tumors that are believed to mediate self-renewal and relapse in glioblastoma (GBM), the most deadly form of primary brain cancer. In radiation oncology, hyperthermia is known to radiosensitize cells, and it is reemerging as a treatment option for patients with GBM. In this study, we investigated the mechanisms of hyperthermic radiosensitization in GSCs by a phospho-kinase array that revealed the survival kinase AKT as a critical sensitization determinant. GSCs treated with radiation alone exhibited increased AKT activation, but the addition of hyperthermia before radiotherapy reduced AKT activation and impaired GSC proliferation. Introduction of constitutively active AKT in GSCs compromised hyperthermic radiosensitization. Pharmacologic inhibition of PI3K further enhanced the radiosensitizing effects of hyperthermia. In a preclinical orthotopic transplant model of human GBM, thermoradiotherapy reduced pS6 levels, delayed tumor growth, and extended animal survival. Together, our results offer a preclinical proof-of-concept for further evaluation of combined hyperthermia and radiation for GBM treatment.


Assuntos
Glioma/terapia , Hipertermia Induzida , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/efeitos da radiação , Proteína Oncogênica v-akt/antagonistas & inibidores , Tolerância a Radiação , Animais , Morte Celular/efeitos da radiação , Proliferação de Células/genética , Proliferação de Células/efeitos da radiação , Células Cultivadas , Terapia Combinada , Reparo do DNA/efeitos da radiação , Glioma/genética , Glioma/patologia , Humanos , Camundongos , Camundongos Nus , Células-Tronco Neoplásicas/patologia , Proteína Oncogênica v-akt/genética , Proteína Oncogênica v-akt/metabolismo , Tolerância a Radiação/genética , Transdução de Sinais/genética , Transdução de Sinais/efeitos da radiação
6.
Drugs Today (Barc) ; 42(10): 657-70, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17136225

RESUMO

In clinical trials thus far, single-targeted kinase inhibitors have shown only limited success in demonstrating survival benefits in cancer. This has led to the development of multitargeted kinase inhibitors capable of disrupting various mitogenic pathways in both cancer cells and associated vasculature. Vandetanib is a novel multitargeted kinase inhibitor exhibiting potent activity against vascular endothelial growth factor receptor-2 (VEGFR-2; kinase insert domain-containing receptor [KDR]) and, to a lesser extent, epidermal growth factor receptor (EGFR) and RET kinase. Vascular endothelial growth factor (VEGF) and VEGFR-2 play a pivotal role in regulating angiogenesis and vascular permeability in cancers. In addition to its antiangiogenic effects, vandetanib acts against EGFR, which is overexpressed or mutated in several solid tumors. Furthermore, vandetanib exerts activity against oncogenic RET kinase, the overexpression of which is common in medullary and papillary thyroid carcinomas. Therefore, the multitargeted kinase inhibitor vandetanib represents a new approach, targeting both tumor cells and tumor-associated endothelial cells. Preclinical studies of vandetanib have demonstrated antitumor efficacy against multiple human cancer xenografts in subcutaneous, orthotopic and metastatic models. Phase I clinical trials have demonstrated that vandetanib is well tolerated. Common adverse events included rash, diarrhea and asymptomatic QTc prolongation. Phase II clinical studies in patients with non-small-cell lung cancer have shown promising results, employing vandetanib as both monotherapy and in combination with docetaxel. Phase II studies in other cancers have likewise been initiated. This review summarizes preclinical and clinical studies of vandetanib for the treatment of cancers.


Assuntos
Neoplasias/tratamento farmacológico , Piperidinas/uso terapêutico , Quinazolinas/uso terapêutico , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Ensaios Clínicos como Assunto , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Estrutura Molecular , Piperidinas/química , Piperidinas/farmacologia , Quinazolinas/química , Quinazolinas/farmacologia , Resultado do Tratamento
7.
J Neurooncol ; 65(1): 27-35, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14649883

RESUMO

TP-38 is a recombinant chimeric targeted toxin composed of the EGFR binding ligand TGF-alpha and a genetically engineered form of the Pseudomonas exotoxin, PE-38. After in vitro and in vivo animal studies that showed specific activity and defined the maximum tolerated dose (MTD), we investigated this agent in a Phase I trial. The primary objective of this study was to define the MTD and dose limiting toxicity of TP-38 delivered by convection-enhanced delivery in patients with recurrent malignant brain tumors. Twenty patients were enrolled in the study and doses were escalated from 25 ng/mL to 100 with a 40 mL infusion volume delivered by two catheters. One patient developed Grade IV fatigue at the 100 ng/mL dose, but the MTD has not been established. The overall median survival after TP-38 for all patients was 23 weeks whereas for those without radiographic evidence of residual disease at the time of therapy, the median survival was 31.9 weeks. Overall, 3 of 15 patients, with residual disease at the time of therapy, have demonstrated radiographic responses and one patient with a complete response and has survived greater than 83 weeks.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Exotoxinas/administração & dosagem , Glioblastoma/tratamento farmacológico , Proteínas Recombinantes de Fusão/administração & dosagem , Fator de Crescimento Transformador alfa/administração & dosagem , Adulto , Idoso , Neoplasias Encefálicas/mortalidade , Avaliação Pré-Clínica de Medicamentos , Feminino , Glioblastoma/mortalidade , Humanos , Infusões Parenterais , Masculino , Dose Máxima Tolerável , Pessoa de Meia-Idade , Pseudomonas aeruginosa/química , Taxa de Sobrevida , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA