Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurosci ; 36(41): 10696-10706, 2016 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-27733619

RESUMO

Human aging studies suggest that an increased use of top-down knowledge-based resources would compensate for degraded upstream acoustic information to accurately identify important temporally rich signals. Sinusoidal amplitude-modulated (SAM) stimuli have been used to mimic the fast-changing temporal features in speech and species-specific vocalizations. Single units were recorded from auditory thalamus [medial geniculate body (MGB)] of young awake, aged awake, young anesthetized, and aged anesthetized rats. SAM stimuli were modulated between 2 and 1024 Hz with the modulation frequency (fm) changed randomly (RAN) across trials or sequentially (SEQ) after several repeated trials. Units were found to be RAN-preferring, SEQ-preferring, or nonselective based on total firing rate. Significant anesthesia and age effects were found. The majority (86%) of young anesthetized units preferred RAN SAM stimuli; significantly fewer young awake units (51%, p < 0.0001) preferred RAN SAM signals with 16% preferring SEQ SAM. Compared with young awake units, there was a significant increase of aged awake units preferring SEQ SAM (30%, p < 0.05). We examined RAN versus SEQ differences across fms by measuring selective fm areas under the rate modulation transfer function curve. The largest age-related differences from awake animals were found for mid-to-high fms in MGB units, with young units preferring RAN SAM while aged units showed a greater preference for SEQ-presented SAM. Together, these findings suggest that aged MGB units/animals employ increased top-down mediated stimulus context to enhance processing of "expected" temporally rich stimuli, especially at more challenging higher fms. SIGNIFICANCE STATEMENT: Older individuals compensate for impaired ascending acoustic information by increasing use of cortical cognitive and attentional resources. The interplay between ascending and descending influences in the thalamus may serve to enhance the salience of speech signals that are degraded as they ascend to the cortex. The present findings demonstrate that medial geniculate body units from awake rats show an age-related preference for predictable modulated signals relative to randomly presented signals, especially at higher, more challenging modulation frequencies. Conversely, units from anesthetized animals, with little top-down influences, strongly preferred randomly presented modulated sequences. These results suggest a neuronal substrate for an age-related increase in experience/attentional-based influences in processing temporally complex auditory information in the auditory thalamus.


Assuntos
Anestesia , Vias Auditivas/crescimento & desenvolvimento , Vias Auditivas/fisiologia , Tálamo/crescimento & desenvolvimento , Tálamo/fisiologia , Estimulação Acústica , Anestésicos Intravenosos/farmacologia , Animais , Atenção/fisiologia , Vias Auditivas/efeitos dos fármacos , Potenciais Evocados Auditivos do Tronco Encefálico/efeitos dos fármacos , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Masculino , Neurônios/fisiologia , Ratos , Ratos Endogâmicos F344 , Tálamo/efeitos dos fármacos , Uretana/farmacologia
2.
J Neurosci ; 33(3): 1218-27a, 2013 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-23325258

RESUMO

Age-related deficits in detecting and understanding speech, which can lead to social withdrawal and isolation, have been linked to changes in the central auditory system. Many of these central age-related changes involve altered mechanisms of inhibitory neurotransmission, essential for accurate and reliable auditory processing. In sensory thalamus, GABA mediates fast (phasic) inhibition via synaptic GABA(A) receptors (GABA(A)Rs) and long-lasting (tonic) inhibition via high-affinity (extrasynaptic) GABA(A)Rs, which provide a majority of the overall inhibitory tone in sensory thalamus. Due to a delicate balance between excitation and inhibition, alteration of normal thalamic inhibitory function with age and a reduction of tonic GABA(A)R-mediated inhibition may disrupt normal adult auditory processing, sensory gating, thalamocortical rhythmicity, and slow-wave sleep. The present study examines age-related homeostatic plasticity of GABA(A)R function in auditory thalamus or the medial geniculate body (MGB). Using thalamic slices from young adult (3-8 months) and aged (28-32 months) rats, these studies found a 45.5% reduction in GABA(A)R density and a 50.4% reduction in GABA(A)R-mediated tonic whole cell Cl(-) currents in the aged MGB. Synaptic GABA(A)R-mediated inhibition appeared differentially affected in aged lemniscal and nonlemniscal MGB. Except for resting membrane potential, basic properties were unaltered with age, including neuronal Cl(-) homeostasis determined using the gramicidin perforated patch-clamp method. Results demonstrate selective significant age-dependent deficits in the tonic inhibitory tone within the MGB. These data suggest that selective GABA(A)R subtype agonists or modulators might be used to augment MGB inhibitory neurotransmission, improving speech understanding, sensory gating, and slow-wave sleep for a subset of elderly individuals.


Assuntos
Envelhecimento/fisiologia , Vias Auditivas/fisiologia , Inibição Neural/fisiologia , Neurônios/fisiologia , Receptores de GABA-A/metabolismo , Transmissão Sináptica/fisiologia , Tálamo/fisiologia , Envelhecimento/metabolismo , Animais , Potenciais Pós-Sinápticos Inibidores/fisiologia , Potenciais da Membrana/fisiologia , Técnicas de Patch-Clamp , Ratos , Ácido gama-Aminobutírico/metabolismo
3.
Brain Res ; 1485: 77-87, 2012 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-22405692

RESUMO

Tinnitus perception depends on the presence of its neural correlates within the auditory neuraxis and associated structures. Targeting specific circuits and receptors within the central nervous system in an effort to relieve the perception of tinnitus and its impact on one's emotional and mental state has become a focus of tinnitus research. One approach is to upregulate endogenous inhibitory neurotransmitter levels (e.g., glycine and GABA) and selectively target inhibitory receptors in key circuits to normalize tinnitus pathophysiology. Thus, the basic functional and molecular properties of two major ligand-gated inhibitory receptor systems, the GABA(A) receptor (GABA(A)R) and glycine receptor (GlyR) are described. Also reviewed is the rationale for targeting inhibition, which stems from reported tinnitus-related homeostatic plasticity of inhibitory neurotransmitter systems and associated enhanced neuronal excitability throughout most central auditory structures. However, the putative role of the medial geniculate body (MGB) in tinnitus has not been previously addressed, specifically in terms of its inhibitory afferents from inferior colliculus and thalamic reticular nucleus and its GABA(A)R functional heterogeneity. This heterogeneous population of GABA(A)Rs, which may be altered in tinnitus pathology, and its key anatomical position in the auditory CNS make the MGB a compelling structure for tinnitus research. Finally, some selective compounds, which enhance tonic inhibition, have successfully ameliorated tinnitus in animal studies, suggesting that the MGB and, to a lesser degree, the auditory cortex may be their primary locus of action. These pharmacological interventions are examined in terms of their mechanism of action and why these agents may be effective in tinnitus treatment. This article is part of a Special Issue entitled: Tinnitus Neuroscience.


Assuntos
Transmissão Sináptica/fisiologia , Zumbido/fisiopatologia , Humanos , Microscopia Confocal , Neurônios/patologia , Neurônios/fisiologia , Neurotransmissores/fisiologia , Ensaio Radioligante , Receptores de Neurotransmissores/fisiologia , Tálamo/fisiopatologia , Zumbido/tratamento farmacológico , Zumbido/patologia
4.
PLoS One ; 6(1): e16508, 2011 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-21298071

RESUMO

BACKGROUND: Neural inhibition plays an important role in auditory processing and attentional gating. Extrasynaptic GABA(A) receptors (GABA(A)R), containing α(4)and δ GABA(A)R subunits, are thought to be activated by GABA spillover outside of the synapse following release resulting in a tonic inhibitory Cl(-) current which could account for up to 90% of total inhibition in visual and somatosensory thalamus. However, the presence of this unique type of inhibition has not been identified in auditory thalamus. METHODOLOGY/PRINCIPAL FINDINGS: The present study used gaboxadol, a partially selective potent agonist for δ-subunit containing GABA(A) receptor constructs to elucidate the presence of extrasynaptic GABA(A)Rs using both a quantitative receptor binding assay and patch-clamp electrophysiology in thalamic brain slices. Intense [(3)H]gaboxadol binding was found to be localized to the MGB while whole cell recordings from MGB neurons in the presence of gaboxadol demonstrated the expression of δ-subunit containing GABA(A)Rs capable of mediating a tonic inhibitory Cl(-) current. CONCLUSIONS/SIGNIFICANCE: Potent tonic inhibitory GABA(A)R responses mediated by extrasynaptic receptors may be important in understanding how acoustic information is processed by auditory thalamic neurons as it ascends to auditory cortex. In addition to affecting cellular behavior and possibly neurotransmission, functional extrasynaptic δ-subunit containing GABA(A)Rs may represent a novel pharmacological target for the treatment of auditory pathologies including temporal processing disorders or tinnitus.


Assuntos
Vias Auditivas , Inibição Neural , Receptores de GABA-A/fisiologia , Tálamo/fisiologia , Animais , Isoxazóis/farmacologia , Subunidades Proteicas/agonistas , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA