Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biosci Rep ; 43(9)2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37671923

RESUMO

Iron deficiency anemia (IDA) is a leading global health concern affecting approximately 30% of the population. Treatment for IDA consists of replenishment of iron stores, either by oral or intravenous (IV) supplementation. There is a complex bidirectional interplay between the gut microbiota, the host's iron status, and dietary iron availability. Dietary iron deficiency and supplementation can influence the gut microbiome; however, the effect of IV iron on the gut microbiome is unknown. We studied how commonly used IV iron preparations, ferric carboxymaltose (FCM) and ferric derisomaltose (FDI), affected the gut microbiome in female iron-deficient anemic mice. At the phylum level, vehicle-treated mice showed an expansion in Verrucomicrobia, mostly because of the increased abundance of Akkermansia muciniphila, along with contraction in Firmicutes, resulting in a lower Firmicutes/Bacteroidetes ratio (indicator of dysbiosis). Treatment with either FCM or FDI restored the microbiome such that Firmicutes and Bacteroidetes were the dominant phyla. Interestingly, the phyla Proteobacteria and several members of Bacteroidetes (e.g., Alistipes) were expanded in mice treated with FCM compared with those treated with FDI. In contrast, several Clostridia class members were expanded in mice treated with FDI compared with FCM (e.g., Dorea spp., Eubacterium). Our data demonstrate that IV iron increases gut microbiome diversity independently of the iron preparation used; however, differences exist between FCM and FDI treatments. In conclusion, replenishing iron stores with IV iron preparations in clinical conditions, such as inflammatory bowel disease or chronic kidney disease, could affect gut microbiome composition and consequently contribute to an altered disease outcome.


Assuntos
Microbioma Gastrointestinal , Ferro , Feminino , Animais , Camundongos , Dissacarídeos , Ferro da Dieta , Bacteroidetes , Firmicutes
2.
Curr Opin Nephrol Hypertens ; 31(5): 486-492, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35894284

RESUMO

PURPOSE OF REVIEW: Targeting sodium phosphate cotransporter 2a (Npt2a) offers a novel strategy for treating hyperphosphatemia in chronic kidney disease (CKD). Here we review recent studies on the efficacy of Npt2a inhibition, its plasma phosphate (Pi)-lowering effects, as well as potential "off-target" beneficial effects on cardiovascular consequences. RECENT FINDINGS: Two novel Npt2a-selective inhibitors (PF-06869206 and BAY-767) have been developed. Pharmacological Npt2a inhibition shows a significant phosphaturic effect and consequently lowers plasma Pi and parathyroid hormone (PTH) levels regardless of CKD. However, plasma fibroblast growth factor 23 (FGF23), a master regulator of Pi homeostasis, shows inconsistent responses between these two inhibitors (no effect by PF-06869206 vs. reduction by BAY-767). In addition to the effects on Pi homeostasis, Npt2a inhibition also enhances urinary excretions of Na+, Cl-, and Ca2+, which is recapitulated in animal models with reduced kidney function. The effect of Npt2a inhibition by BAY-767 on vascular calcification has been studied, with positive results showing that oral treatment with BAY-767 (10 mg kg-1) attenuated the increases in plasma Pi and Ca2+ content in the aorta under the setting of vascular calcification induced by a pan-FGF receptor inhibitor. Together, Npt2a inhibition offers a promising therapeutic approach for treating hyperphosphatemia and reducing cardiovascular complications in CKD. SUMMARY: Npt2a inhibition significantly increases urinary Pi excretion and lowers plasma Pi and PTH levels; moreover, it exerts pleiotropic "off-target" effects, providing a novel treatment for hyperphosphatemia and exhibiting beneficial potential for cardiovascular complications in CKD.


Assuntos
Hiperfosfatemia , Insuficiência Renal Crônica , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa , Calcificação Vascular , Animais , Cálcio/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Humanos , Hiperfosfatemia/tratamento farmacológico , Hiperfosfatemia/etiologia , Hormônio Paratireóideo/metabolismo , Fosfatos/metabolismo , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/tratamento farmacológico , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/antagonistas & inibidores
3.
Biochem Soc Trans ; 50(1): 439-446, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-34994388

RESUMO

Hyperphosphatemia results from an imbalance in phosphate (Pi) homeostasis. In patients with and without reduced kidney function, hyperphosphatemia is associated with cardiovascular complications. The current mainstays in the management of hyperphosphatemia are oral Pi binder and dietary Pi restriction. Although these options are employed in patients with chronic kidney disease (CKD), they seem inadequate to correct elevated plasma Pi levels. In addition, a paradoxical increase in expression of intestinal Pi transporter and uptake may occur. Recently, studies in rodents targeting the renal Na+/Pi cotransporter 2a (Npt2a), responsible for ∼70% of Pi reabsorption, have been proposed as a potential treatment option. Two compounds (PF-06869206 and BAY-767) have been developed which are selective for Npt2a. These Npt2a inhibitors significantly increased urinary Pi excretion consequently lowering plasma Pi and PTH levels. Additionally, increases in urinary excretions of Na+, Cl- and Ca2+ have been observed. Some of these results are also seen in models of reduced kidney function. Responses of FGF23, a phosphaturic hormone that has been linked to the development of left ventricular hypertrophy in CKD, are ambiguous. In this review, we discuss the recent advances on the role of Npt2a inhibition on Pi homeostasis as well as other pleiotropic effects observed with Npt2a inhibition.


Assuntos
Hiperfosfatemia , Insuficiência Renal Crônica , Animais , Feminino , Humanos , Hiperfosfatemia/tratamento farmacológico , Masculino , Camundongos , Camundongos Knockout , Hormônio Paratireóideo/metabolismo , Fosfatos/metabolismo , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA