RESUMO
Extracts from Nigella arvensis L. seeds, which are widely used as anti-inflammatory remedies in traditional medicine of Northern Africa, were able to inhibit the expression of the pro-inflammatory neutrophil chemokine Interleukin (IL)-8 in Cystic Fibrosis (CF) bronchial epithelial IB3-1 cells exposed to the Gram-negative bacterium Pseudomonas aeruginosa. The chemical composition of the extracts led to the identification of three major components, ß-sitosterol, stigmasterol, and campesterol, which are the most abundant phytosterols, cholesterol-like molecules, usually found in plants. ß-sitosterol (BSS) was the only compound that significantly reproduced the inhibition of the P. aeruginosa-dependent expression of IL-8 at nanomolar concentrations. BSS was tested in CF airway epithelial CuFi-1 cells infected with P. aeruginosa. BSS (100 nM), showed a significant and consistent inhibitory activity on expression of the P. aeruginosa-stimulated expression chemokines IL-8, GRO-α GRO-ß, which play a pivotal role in the recruitment of neutrophils in CF inflamed lungs. Preliminary mechanistic analysis showed that BSS partially inhibits the P. aeruginosa-dependent activation of Protein Kinase C isoform alpha, which is known to be involved in the transmembrane signaling activating IL-8 gene expression in bronchial epithelial cells. These data indicate BSS as a promising molecule to control excessive lung inflammation in CF patients.
RESUMO
The jellyfish Aequorea victoria produces a 22-kDa protein named aequorin that has had an important role in the study of calcium (Ca(2+)) signaling. Aequorin reacts with Ca(2+) via oxidation of the prosthetic group, coelenterazine, which results in emission of light. This signal can be detected by using a special luminescence reader (called aequorinometer) or luminescence plate readers. Here we describe the main characteristics of aequorin as a Ca(2+) probe and how to measure Ca(2+) in different intracellular compartments of animal cells (cytosol, different mitochondrial districts, nucleus, endoplasmic reticulum (ER), Golgi apparatus, peroxisomes and subplasma-membrane cytosol), ranging from single-well analyses to high-throughput screening by transfecting animal cells using DNA vectors carrying recombinant aequorin chimeras. The use of aequorin mutants and modified versions of coelenterazione increases the range of calcium concentrations that can be recorded. Cell culture and transfection takes â¼3 d. An experiment including signal calibration and the subsequent analyses will take â¼1 d.
Assuntos
Equorina/análise , Cálcio/metabolismo , Medições Luminescentes/métodos , Proteínas Luminescentes/análise , Mamíferos/metabolismo , Equorina/química , Animais , Cálcio/química , Técnicas de Cultura de Células , Imidazóis/química , Oxirredução , Pirazinas/química , Cifozoários/metabolismo , Transfecção/métodosRESUMO
The preservation of livers to be transplanted is currently obtained by static cold storage at 4 C degrees and flushing with UW solution. New methods of preservation are being studied that take advantage of machines for continuous hypothermic perfusion of the organ. Such machines have permitted a lengthening of preservation times and the use of livers from non-beating-heart donors. In an attempt to eliminate the damage due to hypothermia, to lengthen preservation times, and to extend the availability of livers to be transplanted, also using those subjected to short periods of warm ischaemia, we have constructed a transportable machine that produces a hyperbaric atmosphere and allows continuous perfusion of the liver. Ten pig livers from beating-heart donors were perfused with Ringer solution in hyperbaric conditions with oxygen at temperatures ranging from 10 to 25 degrees C for periods of up to 24 hours and studied by means of histopathological analysis and tests of mitochondrial activity (FAU) in order to verify cell viability. The group of livers perfused up to 15 hours yielded an FAU value of 169.40 +/- 5.5 compared to the value of the non-perfused livers (controls) established as 100 and those perfused up to 24 hours had a FAU value of 139.18 +/- 10.7 compared to the controls established as 100, thus demonstrating cell viability. The viability of the organs after preservation with our procedure in the hyperbaric oxygenation perfusion machine gives us good reason to believe that, after appropriate further confirmation of the results, it will be possible to use the machine for the transplantation both of livers subjected to warm ischaemia and of livers preserved for longer periods than is currently the case.