Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
JCI Insight ; 7(19)2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-35998039

RESUMO

BACKGROUNDDuring aging, there is a functional decline in the pool of muscle stem cells (MuSCs) that influences the functional and regenerative capacity of skeletal muscle. Preclinical evidence has suggested that nicotinamide riboside (NR) and pterostilbene (PT) can improve muscle regeneration, e.g., by increasing MuSC function. The objective of this study was to investigate if supplementation with NR and PT (NRPT) promotes skeletal muscle regeneration after muscle injury in elderly individuals by improved recruitment of MuSCs.METHODSThirty-two elderly individuals (55-80 years of age) were randomized to daily supplementation with either NRPT (1,000 mg NR and 200 mg PT) or matched placebo. Two weeks after initiation of supplementation, skeletal muscle injury was induced by electrically induced eccentric muscle work. Skeletal muscle biopsies were obtained before, 2 hours after, and 2, 8, and 30 days after injury.RESULTSA substantial skeletal muscle injury was induced by the protocol and associated with release of myoglobin and creatine kinase, muscle soreness, tissue edema, and a decrease in muscle strength. MuSC content, proliferation, and cell size revealed a large demand for recruitment after injury, but this was not affected by NRPT. Furthermore, histological analyses of muscle fiber area, central nuclei, and embryonic myosin heavy chain showed no NRPT supplementation effect.CONCLUSIONDaily supplementation with 1,000 mg NR and 200 mg PT is safe but does not improve recruitment of the MuSC pool or other measures of muscle recovery in response to injury or subsequent regeneration in elderly individuals.TRIAL REGISTRATIONClinicalTrials.gov NCT03754842.FUNDINGNovo Nordisk Foundation (NNF17OC0027242) and Novo Nordisk Foundation CBMR.


Assuntos
Doenças Musculares , Cadeias Pesadas de Miosina , Idoso , Creatina Quinase Forma MM , Suplementos Nutricionais , Humanos , Músculo Esquelético , Mioglobina/farmacologia , Niacinamida/análogos & derivados , Compostos de Piridínio , Estilbenos
2.
Chiropr Man Therap ; 30(1): 2, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34996490

RESUMO

BACKGROUND: Whiplash injury is common following road traffic crashes affecting millions worldwide, with up to 50% of the injured developing chronic symptoms and 15% having a reduced working capability due to ongoing disability. Many of these patients receive treatment in primary care settings based upon clinical and diagnostic imaging findings. Despite the identification of different types of injuries in the whiplash patients, clinically significant relationships between injuries and chronic symptoms remains to be fully established. This study investigated the feasibility of magnetic resonance imaging (MRI) techniques including quantitative diffusion weighted imaging and measurements of cerebrospinal fluid (CSF) flow as novel non-invasive biomarkers in a population of healthy volunteers and chronic whiplash patients recruited from a chiropractic clinic for the purpose of improving our understanding of whiplash injury. METHODS: Twenty chronic whiplash patients and 18 healthy age- and gender matched control subjects were included [mean age ± SD (sex ratio; females/males), case group: 37.8 years ± 9.1 (1.22), control group: 35.1 years ± 9.2 (1.25)]. Data was collected from May 2019 to July 2020. Data from questionnaires pertaining to the car crash, acute and current symptoms were retrieved and findings from clinical examination and MRI including morphologic, diffusion weighted and phase-contrast images were recorded. The apparent diffusion coefficient and fractional anisotropy were calculated, and measurement and analysis of CSF flow was conducted. Statistical analyses included Fisher's exact test, Mann Whitney U test and analysis of variance between groups. RESULTS: The studied population was described in detail using readily available clinical tools. No statistically significant differences were found between the groups on MRI. CONCLUSIONS: This study did not show that MRI-based measures of morphology, spinal cord and nerve root diffusion or cerebrospinal fluid flow are sensitive biomarkers to distinguish between chronic whiplash patients and healthy controls. The detailed description of the chronic whiplash patients using readily available clinical tools may be of great relevance to the clinician. In the context of feasibility, clinical practice-based advanced imaging studies with a technical setup similar to the presented can be expected to have a high likelihood of successful completion.


Assuntos
Traumatismos em Chicotada , Estudos de Viabilidade , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Inquéritos e Questionários , Traumatismos em Chicotada/diagnóstico por imagem
3.
NMR Biomed ; 35(6): e4678, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34961990

RESUMO

Personalized medicine or individualized therapy promises a paradigm shift in healthcare. This is particularly true in complex and multifactorial diseases such as diabetes and the multitude of related pathophysiological complications. Diabetic cardiomyopathy represents an emerging condition that could be effectively treated if better diagnostic and, in particular, better therapeutic monitoring tools were available. In this study, we investigate the ability to differentiate low and high doses of metabolically targeted therapy in an obese type 2 diabetic rat model. Low-dose dichloroacetate (DCA) treatment was associated with increased lactate production, while no or little change was seen in bicarbonate production. High-dose DCA treatment was associated with a significant metabolic switch towards increased bicarbonate production. These findings support further studies using hyperpolarized [1-13 C]-pyruvate magnetic resonance imaging to differentiate treatment effects and thus allow for personalized titration of therapeutics.


Assuntos
Diabetes Mellitus Tipo 2 , Ácido Pirúvico , Acetatos , Animais , Bicarbonatos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/diagnóstico por imagem , Ácido Dicloroacético/farmacologia , Ácido Dicloroacético/uso terapêutico , Coração/diagnóstico por imagem , Coração/fisiologia , Imageamento por Ressonância Magnética/métodos , Ácido Pirúvico/metabolismo , Ratos
4.
J Physiol ; 598(4): 731-754, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31710095

RESUMO

KEY POINTS: This is the first long-term human clinical trial to report on effects of nicotinamide riboside (NR) on skeletal muscle mitochondrial function, content and morphology. NR supplementation decreases nicotinamide phosphoribosyltransferase (NAMPT) protein abundance in skeletal muscle. NR supplementation does not affect NAD metabolite concentrations in skeletal muscle. Respiration, distribution and quantity of muscle mitochondria are unaffected by NR. NAMPT in skeletal muscle correlates positively with oxidative phosphorylation Complex I, sirtuin 3 and succinate dehydrogenase. ABSTRACT: Preclinical evidence suggests that the nicotinamide adenine dinucleotide (NAD+ ) precursor nicotinamide riboside (NR) boosts NAD+ levels and improves diseases associated with mitochondrial dysfunction. We aimed to determine if dietary NR supplementation in middle-aged, obese, insulin-resistant men affects mitochondrial respiration, content and morphology in skeletal muscle. In a randomized, placebo-controlled clinical trial, 40 participants received 1000 mg NR or placebo twice daily for 12 weeks. Skeletal muscle biopsies were collected before and after the intervention. Mitochondrial respiratory capacity was determined by high-resolution respirometry on single muscle fibres. Protein abundance and mRNA expression were measured by Western blot and quantitative PCR analyses, respectively, and in a subset of the participants (placebo n = 8; NR n = 8) we quantified mitochondrial fractional area and mitochondrial morphology by laser scanning confocal microscopy. Protein levels of nicotinamide phosphoribosyltransferase (NAMPT), an essential NAD+ biosynthetic enzyme in skeletal muscle, decreased by 14% with NR. However, steady-state NAD+ levels as well as gene expression and protein abundance of other NAD+ biosynthetic enzymes remained unchanged. Neither respiratory capacity of skeletal muscle mitochondria nor abundance of mitochondrial associated proteins were affected by NR. Moreover, no changes in mitochondrial fractional area or network morphology were observed. Our data do not support the hypothesis that dietary NR supplementation has significant impact on skeletal muscle mitochondria in obese and insulin-resistant men. Future studies on the effects of NR on human skeletal muscle may include both sexes and potentially provide comparisons between young and older people.


Assuntos
Resistência à Insulina , Mitocôndrias Musculares/fisiologia , Músculo Esquelético/fisiologia , Niacinamida/análogos & derivados , Obesidade/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , NAD/metabolismo , Niacinamida/administração & dosagem , Nicotinamida Fosforribosiltransferase/metabolismo , Compostos de Piridínio
5.
Am J Clin Nutr ; 108(2): 343-353, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29992272

RESUMO

Background: Animal studies suggest a positive role for nicotinamide riboside (NR) on insulin sensitivity and hepatic steatosis in models of obesity and type 2 diabetes. NR, an NAD+ precursor, is a member of the vitamin B-3 family now available as an over-the-counter supplement. Although data from preclinical trials appear consistent, potential effects and safety need to be evaluated in human clinical trials. Objective: The aim of this study was to test the safety of dietary NR supplementation over a 12-wk period and potential to improve insulin sensitivity and other metabolic parameters in obese, insulin-resistant men. Design: In an investigator-initiated randomized, placebo-controlled, double-blinded, and parallel-group designed clinical trial, forty healthy, sedentary men with a body mass index (BMI) > 30 kg/m2, age-range 40-70 y were randomly assigned to 12 wk of NR (1000 mg twice daily) or placebo. We determined the effects of NR supplementation on insulin sensitivity by a hyperinsulinemic euglycemic clamp and substrate metabolism by indirect calorimetry and labeled substrates of tritiated glucose and palmitate. Body composition and fat mass distribution were determined by whole-body dual-energy X-ray absorptiometry (DXA) and MRI scans, and measurements of intrahepatic lipid content were obtained by MR spectroscopy. Results: Insulin sensitivity, endogenous glucose production, and glucose disposal and oxidation were not improved by NR supplementation. Similarly, NR supplementation had no effect on resting energy expenditure, lipolysis, oxidation of lipids, or body composition. No serious adverse events due to NR supplementation were observed and safety blood tests were normal. Conclusion: 12 wk of NR supplementation in doses of 2000 mg/d appears safe, but does not improve insulin sensitivity and whole-body glucose metabolism in obese, insulin-resistant men. This trial was registered at clinicaltrials.gov as NCT02303483.


Assuntos
Resistência à Insulina , Metabolismo dos Lipídeos , Niacinamida/análogos & derivados , Obesidade/metabolismo , Adulto , Idoso , Composição Corporal , Suplementos Nutricionais , Método Duplo-Cego , Glucose/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Niacinamida/administração & dosagem , Niacinamida/efeitos adversos , Compostos de Piridínio
6.
Diving Hyperb Med ; 45(4): 247-54, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26687313

RESUMO

OBJECTIVES: We describe the development of a novel preclinical rodent-sized pressure chamber system compatible with computed tomography (CT), positron emission tomography (PET) and magnetic resonance imaging (MRI) that allows continuous uncompromised and minimally invasive data acquisition throughout hyperbaric exposures. The effect of various pressures on the acquired image intensity obtained with different CT, PET and MRI phantoms are characterised. MATERIAL AND METHODS: Tissue-representative phantom models were examined with CT, PET or MRI at normobaric pressure and hyperbaric pressures up to 1.013 mPa. The relationships between the acquired image signals and pressure were evaluated by linear regression analysis for each phantom. RESULTS: CT and PET showed no effect of pressure per se, except for CT of air, demonstrating an increase in Hounsfield units in proportion to the pressure. For MRI, pressurisation induced no effect on the longitudinal relaxation rate (R1), whereas the transversal relaxation rate (R2) changed slightly. The R2 data further revealed an association between pressure and the concentration of the paramagnetic nuclei gadolinium, the contrast agent used to mimic different tissues in the MRI phantoms. CONCLUSION: This study demonstrates a pressure chamber system compatible with CT, PET and MRI. We found that no correction in image intensity was required with pressurisation up to 1.013 mPa for any imaging modality. CT, PET or MRI can be used to obtain anatomical and physiological information from pressurised model animals in this chamber.


Assuntos
Oxigenoterapia Hiperbárica/instrumentação , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Tomografia por Emissão de Pósitrons/métodos , Tomografia Computadorizada por Raios X/métodos , Desenho de Equipamento/métodos , Oxigenoterapia Hiperbárica/métodos , Modelos Lineares , Pressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA