Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Sci Total Environ ; 918: 170582, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38309349

RESUMO

Phosphorus (P) loss caused by the irrational use of manure organic fertilizer has become a worldwide environmental problem, which has caused a potential threat to water safety and intensified agricultural non-point source pollution. Hydrothermal carbonization is method with a low-energy consumption and high efficiency to deal with environmental problems. Application of pig manure-derived hydrochar (PMH) to soil exhibited potential of sustainable development compared with the pristine pig manure (PM). However, the effects of PMH on the distribution of P among the fractions/forms and the interaction between microorganisms and P forms and its relevance to the potential loss of P in paddy fields has not been clarified. Therefore, in this study, a soil column experiment was conducted using the untreated soil (control), and the PM, PMH1 (PMH derived at 180 °C), and PMH2 (PMH derived at 260 °C) treated soils (at the dose of 0.05 %) and rice was cultivated to investigate the effects of PM and PMH on the P fractions, mobilization, ad potential loss via the induced changes on soil microbial community after a complete growing season of rice. The trend of P utilization was evaluated by P speciation via continuous extraction and 31P NMR. The addition of PMH reduced the proportion of residual P in soil by 23.8-26.3 %, and increased the proportion of HCl-P and orthophosphate by 116.2-158.6 % and 6.1-6.8 % compared to PM. The abundance of gcd gene developed after the application of PMH2, which enhanced the mobile forms of soil P utilization via secreting gluconic acid. The network diagram analysis concluded that the changes in various P forms were mainly related to Proteobacteria, Bacteroides, Firmicutes and Acidobacteria. The results illustrated that PMH mitigate the potential risk of P loss more than PM by altering P fractions and affecting soil microbial community.


Assuntos
Microbiota , Oryza , Suínos , Animais , Solo/química , Oryza/microbiologia , Esterco , Fósforo/análise , Fertilizantes/análise
2.
Environ Pollut ; 344: 123300, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38199483

RESUMO

Seed nano-priming can be used as an advanced technology for enhancing seed germination, plant growth, and crop productivity; however, the potential role of seed nano-priming in ameliorative cadmium (Cd) bio-toxicity under Cd stress has not yet been sufficiently investigated. Therefore, in this study we investigated the beneficial impacts of seed priming with low (L) and high (H) concentrations of nanoparticles including nSiO2 (50/100 mg L-1), nTiO2 (20/60 mg L-1), nZnO (50/100 mg L-1), nFe3O4 (100/200 mg L-1), nCuO (50/100 mg L-1), and nCeO2 (50/100 mg L-1) on lettuce growth and antioxidant enzyme activities aiming to assess their efficacy for enhancing plant growth and reducing Cd phytotoxicity. The results showed a significant increase in plant growth, biomass production, antioxidant enzyme activities, and photosynthetic efficiency in lettuce treated with nano-primed nSiH + Cd (100 mg L-1), nTiH + Cd (60 mg L-1), and nZnL + Cd (50 mg L-1) under Cd stress. Moreover, nano-priming effectively reduced the accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA) in lettuce shoots. Interestingly, nano-primed nSiH + Cd, nTiH + Cd, and nZnL + Cd demonstrated efficient reduction of Cd uptake, less translocation factor of Cd with high tolerance index, ultimately reducing toxicity by stabilizing the root morphology and superior accumulation of critical nutrients (K, Mg, Ca, Fe, and Zn). Thus, this study provides the first evidence of alleviating Cd toxicity in lettuce by using multiple nanoparticles via priming strategy. The findings highlight the potential of nanoparticles (Si, Zn, and Ti) as stress mitigation agents for improved crop growth and yield in Cd contaminated areas, thereby offering a promising and advanced approach for remediation of Cd contaminated environments.


Assuntos
Cádmio , Nanopartículas , Cádmio/toxicidade , Antioxidantes/farmacologia , Lactuca , Sementes , Nanopartículas/toxicidade
3.
Sci Total Environ ; 902: 165968, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37543321

RESUMO

Mining and smelting of mineral resources causes excessive accumulation of potentially toxic metals (PTMs) in surrounding soils. Here, biochar-based sulfidated nanoscale zero-valent iron (SNZVI/BC) was designed via a one-step liquid phase reduction method to immobilize cadmium (Cd) and zinc (Zn) in a copolluted arable soil. A 60 d soil incubation experiment revealed that Cd and Zn immobilization efficiency by 6 % SNZVI/BC (25.2-26.2 %) was higher than those by individual SNZVI (13.9-18.0 %) or biochar (14.0-19.3 %) based on the changes in diethylene triamine pentaacetic acid (DTPA)-extractable PTM concentrations in soils, exhibiting a synergistic effect. Cd2+ or Zn2+ replaced isomorphously Fe2+ in amorphous ferrous sulfide, as revealed by XRD, XPS, and high-resolution TEM-EDS, forming metal sulfide precipitates and thus immobilizing PTMs. PTM immobilization was further enhanced by adsorption by biochar and oxidation products (Fe2O3 and Fe3O4) of SNZVI via precipitation and surface complexation. SNZVI/BC also increased the concentration of dissolved organic carbon and soil pH, thus stimulating the abundances of beneficial bacteria, i.e., Bacilli, Clostridia, and Desulfuromonadia. These functional bacteria further facilitated microbial Fe(III) reduction, production of ammonium and available potassium, and immobilization of PTMs in soils. The predicted function of the soil microbial community was improved after supplementation with SNZVI/BC. Overall, SNZVI/BC could be a promising functional material that not only immobilized PTMs but also enhanced available nutrients in cocontaminated soils.


Assuntos
Cádmio , Poluentes do Solo , Cádmio/análise , Ferro/análise , Zinco , Carvão Vegetal , Solo , Poluentes do Solo/análise
4.
Plant Physiol Biochem ; 201: 107872, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37478726

RESUMO

Chromium (Cr) is considered one of the most hazardous metal contaminant reducing crop production and putting human health at risk. Phytohormones are known to regulate chromium stress, however, the function of melatonin and strigolactones in Chromium stress tolerance in tomato is rarely investigated. Here we investigated the potential role of melatonin (ML) and strigolactone (SL) on mitigating Chromium toxicity in tomato. With exposure to 300 µM Cr stress a remarkable decline in growth (63.01%), biomass yield (50.25)%, Pigment content (24.32%), photosynthesis, gas exchange and Physico-biochemical attributes of tomato was observed. Cr treatment also resulted in oxidative stress closely associated with higher H2O2 generation (215.66%), Lipid peroxidation (50.29%), electrolyte leakage (440.01%) and accumulation of osmolytes like proline and glycine betine. Moreover, Cr toxicity up-regulated the transcriptional expression profiles of antioxidant, stress related and metal transporter genes and down-regulated the genes related to photosynthesis. The application of ML and SL alleviated the Cr induced phytotoxic effects on photosynthetic pigments, gas exchange parameters and restored growth of tomato plants. ML and SL supplementation induced plant defense system via enhanced regulation of antioxidant enzymes, ascorbate and glutathione pool and transcriptional regulation of several genes. The coordinated regulation of antioxidant and glyoxalase systems expressively suppressed the oxidative stress. Hence, ML and SL application might be considered as an effective approach for minimizing Cr uptake and its detrimental effects in tomato plants grown in contaminated soils. The study may also provide new insights into the role of transcriptional regulation in the protection against heavy metal toxicity.

5.
Sci Total Environ ; 891: 164608, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37286002

RESUMO

The conversion of organic matter and P in the waste composting process affects the efficiency of the composted product. However, the addition of microbial inoculants may improve the conversion characteristics of organic matter and P. In this study, straw-decomposing microbial inoculant (SDMI) was added to investigate its effects on the organic matter stabilization and phosphorus activation during the composting of vegetable waste (VWs). Aliphatic carboxyl-containing compounds were degraded during composting, but the stability of the organic matter and P was improved. The addition of SDMI promoted the degradation of dissolved organic carbon by 81.7 % and improved P stability and thermal stability of organic matter. Hedley sequential P fractionation showed a decrease in the H2O-P proportion by >12 % and increased in the HCl-P proportion by >4 % by the end of composting. Stable forms of P, such as AlPO4 and iron-containing phosphate, were the main forms of P in the final compost. The results provide a basis for producing high-quality vegetable compost products and improving the reutilization potential of VWs.


Assuntos
Inoculantes Agrícolas , Compostagem , Compostagem/métodos , Fósforo/metabolismo , Verduras/metabolismo , Inoculantes Agrícolas/metabolismo , Solo
6.
Environ Pollut ; 331(Pt 1): 121901, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37244529

RESUMO

This study assessed the effect of soaking on the retention and removal of arsenic (As) along with other toxic elements and nutrients in three types of soaked rice or overnight steeped rice (pantavat), as this food dish was highlighted on the Australian MasterChef program in 2021 as a popular recipe. Results showed that brown rice contained twice as much As as basmati and kalijira rice. Cooking with As-free tap water using a rice cooker removed up to 30% of As from basmati rice. Around 21-29% removal of total As was observed in soaked basmati, brown, and kalijira rice. However, while 13% of inorganic As was removed from basmati and brown rice, no changes were noted in the kalijira rice. Regarding nutrient elements, both cooking and soaking rice caused significant enrichment of calcium (Ca) whereas potassium (K), molybdenum (Mo) and selenium (Se) were reduced substantially for the tested rice varieties. The nutrients like magnesium (Mg), iron (Fe), sulfur (S) and phosphorus (P) did not significantly change. The results indicated that soaking can minimize up to 30% As and soaked rice reduced few nutrients like K, Mo and Se. Data in this study highlights the retention and/or loss of toxic and beneficial nutrient elements in pantavat when As-free water is used to prepare this food.


Assuntos
Arsênio , Oryza , Selênio , Arsênio/análise , Austrália , Selênio/análise , Nutrientes , Água , Culinária/métodos , Contaminação de Alimentos/análise
7.
Sci Total Environ ; 857(Pt 2): 159584, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36270372

RESUMO

Land use impacts from agriculture, industrialization, and human population should be considered in surface water quality management. In this study, we utilized an integrated statistical analysis approach mainly including a seasonal Mann-Kendall test, clustering analysis, self-organizing map, Boruta algorithm, and positive matrix factorization to the assessment of the interactions between land use types and water quality in a typical catchment in the Huai River Basin, China, over seven years (2012-2019). Spatially, water quality was clustered into three groups: upstream, midstream, and downstream/mainstream areas. The water quality of upstream sites was better than of mid-, down-, and mainstream. Temporally, water quality did not change significantly during the study period. However, the temporal variation in water quality of up-, down-, and mainstream areas was more stable than in the midstream. The interactions between land use types and water quality parameters at the sub-basin scale varied with seasons. Increasing forest/grassland areas could substantially improve the water quality during the wet season, while nutrients such as phosphorus from cropland and developed land was a driver for water quality deterioration in the dry season. Water area was not a significant factor influencing the variations of ammonia nitrogen (NH3-N) and total phosphorus (TP) in the wet or dry season, due to the intensive dams and sluices in study area. The parameters TP, and total nitrogen (TN) were principally linked with agricultural sources in the wet and dry seasons. The parameters NH3-N in the dry season, and chemical oxygen demand (CODCr) in the wet season were mainly associated with point source discharges. Agricultural source, and urban point source discharges were the main causes of water quality deterioration in the study area. Collectively, these results highlighted the impacts of land use types on variations of water quality parameters in the regulated basin.


Assuntos
Poluentes Químicos da Água , Qualidade da Água , Humanos , Estações do Ano , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Fósforo/análise , Nitrogênio/análise , China
8.
J Hazard Mater ; 443(Pt B): 130203, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36327835

RESUMO

Contamination of paddy soils with potentially toxic elements (PTEs) has become a severe environmental issue. Application of functionalized biochar for rice cultivation has been proposed as an effective means to reduce environmental risks of these PTEs in paddy soils. This work was undertaken to seek the positive effects of a rice husk-derived silicon (Si)-rich biochar (Si-BC) and a pig carcass-derived phosphorus (P)-rich biochar (P-BC), as well as their Fe-modified biochars (Fe-Si-BC and Fe-P-BC) on the enzyme activity and PTE availability in an As-Cd-Pb-contaminated soil. A rice cultivation pot trial was conducted using these functionalized biochars as soil amendments for the alleviation of PTE accumulation in rice plants. Results showed that Si-BC decreased the concentrations of As in rice grain and straw by 59.4 % and 61.4 %, respectively, while Fe-Si-BC significantly (P < 0.05) enhanced plant growth, increasing grain yield (by 38.6 %). Fe-Si-BC significantly (P < 0.05) elevated Cd and Pb accumulation in rice plants. P-BC enhanced the activities of dehydrogenase, catalase, and urease, and reduced grain-Pb and straw-Pb by 49.3 % and 43.2 %, respectively. However, Fe-P-BC reduced plant-As in rice grain and straw by 12.2 % and 51.2 %, respectively, but increased plant-Cd and plant-Pb. Thus, Fe-modified Si- and P-rich biochars could remediate paddy soils contaminated with As, and enhance the yield and quality of rice. Application of pristine P-rich biochar could also be a promising strategy to remediate the Pb-contaminated paddy soils and limit Pb accumulation in rice.


Assuntos
Arsênio , Oryza , Poluentes do Solo , Suínos , Animais , Cádmio/análise , Solo , Arsênio/análise , Silício , Chumbo , Ferro/análise , Fósforo , Poluentes do Solo/análise , Carvão Vegetal , Grão Comestível/química
9.
Sci Total Environ ; 856(Pt 1): 158972, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36179838

RESUMO

In the recent decades, the area of seasonal water (SEW) has substantially increased at the global scale. To evaluate nutrient dynamics in aquatic ecosystems, previous studies have analyzed the determining factors of sediment nutrient content and stoichiometry on whole sediment profiles without depth separation on SEW sites. Such a methodology assumes that SEW sediment is a uniform unit and its nutrient dynamics are regulated by the same mechanism at various depths (uniformity assumption). We tested this assumption using sediment samples from six depth increments of 154 sediment profiles (1 m depth) on SEW sites at Shengjin Lake in subtropical China. We measured sediment total nitrogen (STN), total phosphorus (STP), nutrient fractions, and the molar ratio of STN to STP (RSNP), and investigated their determining factors at various depths. STN, STP, and RSNP were averaged at 1.34 g/kg, 0.55 g/kg, and 5.43, respectively, and all gradually decreased with depth. STN was positively affected by moisture and flooding duration in all depth increments. Instead, the major determining factors of STP changed from particle size at 0-20 cm of depth to pH and electrical conductivity at 30-100 cm of depth. These vertical patterns have close connections with sediment nutrient fractions since sediment N fractions did not shift along profile depths (i.e., over 99 % of STN was organic N) but sediment P fractions did (the percentage of Fe-P and Al-P decreased by 6.25 % but those of Ca-P increased by 4.31 % along the sediment depth gradient). The major determining factors of RSNP showed no obvious vertical patterns because they frequently varied along depth gradients. The results demonstrate that SEW sediment is not a uniform unit and the determining factors of nutrient dynamics change with depth. Our study highlights the importance of improved methodological reflection in studies addressing sediment nutrient dynamics on SEW sites.


Assuntos
Ecossistema , Sedimentos Geológicos , Sedimentos Geológicos/química , Água , Estações do Ano , Fósforo/análise , Lagos/química , Nitrogênio/análise , Nutrientes , China
10.
Chemosphere ; 307(Pt 1): 135688, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35843430

RESUMO

High-technology rare earth elements (REEs) as emerging contaminants have potentially hazardous risks for human health and the environment. Investigating the sorption of REEs on soils is crucial for understanding their migration and transformation. This study evaluated the sorption mechanisms and influencing factors of the rare earth element yttrium (Y) on paddy soil via integrated batch sorption experiments and theoretical modeling analysis. Site energy distribution theory (SEDT) combined with kinetics, thermodynamics, and isotherm sorption models were applied to illustrate the sorption mechanism. In addition, the effects of phosphorus (P), solution pH, particle size of soil microaggregates, and initial Y content on the sorption processes were evaluated by self-organizing map (SOM) and Boruta algorithm. The sorption kinetic behavior of Y on paddy soil was more consistent with the pseudo-second-order model. Thermodynamic results showed that the Y sorption was a spontaneous endothermic reaction. The generalized Langmuir model well described the isotherm data of Y sorption on heterogeneous paddy soil and soil microaggregates surface. The maximum sorption capacity of Y decreased with increasing soil particle size, which may be related to the number of sorption sites for Y on paddy soil and soil microaggregates, as confirmed by SEDT. The heterogeneity of sorption site energy for Y was the highest in the original paddy soil compared with the separated soil microaggregates. The SOM technique and Boruta algorithm highlighted that the initial concentration of Y and coexisting phosphorus played essential roles in the sorption process of Y, indicating that the addition of phosphate fertilizer may be an effective way to reduce the Y bioavailability in paddy soil in practice. These results can provide a scientific basis for the sustainable management of soil REEs and a theoretical foundation for the remediation of REEs-contaminated soils.


Assuntos
Metais Terras Raras , Poluentes do Solo , Adsorção , Fertilizantes/análise , Humanos , Metais Terras Raras/análise , Fosfatos/análise , Fósforo , Solo/química , Poluentes do Solo/análise , Ítrio/análise
11.
Bioresour Technol ; 351: 126976, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35278620

RESUMO

The combined effects of microbial inoculants (MI) and magnesium ammonium phosphate (MAP; struvite) on organic matter (OM) biodegradation and nutrients stabilization during biowaste composting have not yet been investigated. Therefore, the effects of MI and MAP on OM stability and P species during swine manure composting were investigated using geochemical and spectroscopic techniques. MI promoted the degradation of carbohydrates and aliphatic compounds, which improved the degree of OM mineralization and humification. MI and MAP promoted the redistribution of P fractions and species during composting. After composting, the portion of water-soluble P decreased from 50.0% to 23.0%, while the portion of HCl-P increased from 18.5% to 33.5%, which mean that MI and MAP can stabilize P and mitigate its potential loss during composting. These findings indicate that MI can be recommended for enhancing OM biodegradation and stabilization of P during biowastes composting, as a novel trial for the biological waste treatment.


Assuntos
Inoculantes Agrícolas , Compostagem , Animais , Esterco , Fósforo , Solo , Estruvita , Suínos
12.
Sci Total Environ ; 826: 154043, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35202685

RESUMO

Fishpond sediments are rich in organic carbon and nutrients; thus, they can be used as potential fertilizers and soil conditioners. However, sediments can be contaminated with toxic elements (TEs), which have to be immobilized to allow sediment reutilization. Addition of biochars (BCs) to contaminated sediments may enhance their nutrient content and stabilize TEs, which valorize its reutilization. Consequently, this study evaluated the performance of BCs derived from Taraxacum mongolicum Hand-Mazz (TMBC), Tribulus terrestris (TTBC), and rice straw (RSBC) for Cu, Cr, and Zn stabilization and for the enhancement of nutrient content in the fishpond sediments from San Jiang (SJ) and Tan Niu (TN), China. All BCs, particularly TMBC, reduced significantly the average concentrations of Cr, Cu, and Zn in the overlying water (up to 51% for Cr, 71% for Cu, and 68% for Zn) and in the sediments pore water (up to 77% for Cr, 76% for Cu, and 50% for Zn), and also reduced metal leachability (up to 47% for Cr, 60% for Cu, and 62% for Zn), as compared to the control. The acid soluble fraction accounted for the highest portion of the total content of Cr (43-44%), Cu (38-43%), and Zn (42-45%), followed by the reducible, oxidizable, and the residual fraction; this indicates the high potential risk. As compared with the control, TMBC was more effective in reducing the average concentrations of the acid soluble Cr (15-22%), Cu (35-53%), and Zn (21-39%). Added BCs altered the metals acid soluble fraction by shifting it to the oxidizable and residual fractions. Moreover, TMBC improved the macronutrient status in both sediments. This work provides a pathway for TEs remediation of sediments and gives novel insights into the utilization of BC-treated fishpond sediments as fertilizers for crop production.


Assuntos
Metais Pesados , Oryza , Carvão Vegetal , China , Monitoramento Ambiental , Fertilizantes , Sedimentos Geológicos , Metais Pesados/análise , Água
13.
Environ Pollut ; 299: 118877, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35077837

RESUMO

The effects of catalytic hydrothermal (HT) pretreatment on animal manure followed by the addition of hydrochar on the nutrients recovery have not yet been investigated using a combination of chemical, microscopic, and spectroscopic techniques. Therefore, a catalytic HT process was employed to pretreat swine manure without additives (manure-HT) and with H2O2 addition (manure-HT- H2O2) to improve the conversion efficiency of labile or organic phosphorus (P) to inorganic phase. Then, a Ca-Al layered double hydroxide hydrochar (Ca/Al LDH@HC) derived from corn cob biomass was synthesized and applied to enhance P sorption. Scanning electron microscopy (SEM), and three-dimensional excitation emission matrix (3D-EEM), X-ray photoelectron spectroscopy (XPS), P k-edge X-ray absorption near edge structure (XANES), were used to elucidate the mechanisms of P release and capture. The H2O2 assisted HT treatment significantly enhanced the release of inorganic P (251.4 mg/L) as compared to the untreated manure (57.2 mg/L). The 3D-EEM analysis indicated that the labile or organic P was transformed and solubilized efficiently along with the deconstruction of manure components after the H2O2 assisted HT pretreatment. Application of Ca/Al LDH@HC improved the removal efficiency of P from the derived P-rich HT liquid. This sorption process was conformed to the pseudo-second-order model, suggesting that chemisorption was the primary mechanism. The results of SEM and P k-edge XANES exhibited that Ca, as the dominated metal component, could act as a reaction site for the formation of phosphate precipitation. These results provide critical findings about recovering P from manure waste, which is useful for biowastes management and nutrients utilization, and mitigating unintended P loss and potential environmental risks.


Assuntos
Esterco , Fósforo , Animais , Peróxido de Hidrogênio , Esterco/análise , Nutrientes/análise , Fósforo/análise , Análise Espectral , Suínos
14.
J Hazard Mater ; 428: 128205, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-34999562

RESUMO

Producing nanomaterials from hazardous wastes for water and soil treatment is of great concern. Here, we produced and fully characterized two novel nanomaterials from sugar beet processing (SBR)- and brick factory-residuals (BFR) and assed their ability for Cd and Cu sorption in water and reducing metal availability in a contaminated soil. The SBR removed up to 99% of Cu and 91% of Cd in water, and exhibited a significantly faster and higher sorption capacity (qmax (g kg-1) = 1111.1 for Cu and 33.3 for Cd) than BFR (qmax (g kg-1) = 33.3 for Cu and 10.0 for Cd), even at acidic pH. Soil metal availability was significantly reduced by SBR (up to 57% for Cu and 86% for Cd) and BFR (up to 36% for Cu and 68% for Cd) compared to the unamended soil. The higher removal efficacy of SBR over BFR could be attributed to its higher alkalinity (pH = 12.5), carbonate content (82%), and specific surface area, as well as the activity of hydroxyl -OH and Si-O groups. The nano-scale SBR and BFR, the former particularly, are novel, of low cost, and environmental friendly amendments that can be used for the remediation of metal-contaminated water and soil.


Assuntos
Beta vulgaris , Metais Pesados , Nanoestruturas , Poluentes do Solo , Cádmio/análise , Argila , Metais Pesados/análise , Solo , Poluentes do Solo/análise , Resíduos Sólidos , Açúcares , Água
15.
Environ Res ; 204(Pt A): 111924, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34487695

RESUMO

This study assessed the ability of phosphorus (P) fertilizer to remediate the rhizosphere of three wild plant species (Banksia seminuda, a tree; Chloris truncata, a grass; and Hakea prostrata, a shrub) growing in a soil contaminated with total (aliphatic) petroleum hydrocarbon (TPH). Plant growth, photosynthesis (via chlorophyll fluorescence), soil microbial activity, alkane hydroxylase AlkB (aliphatic hydrocarbon-degrading) gene abundance, and TPH removal were evaluated 120 days after planting. Overall, although TPH served as an additional carbon source for soil microorganisms, the presence of TPH in soil resulted in decreased plant growth and photosynthesis. However, growth, photosynthesis, microbial activities, and AlkB gene abundance were enhanced by the application of P fertilizer, thereby increasing TPH removal rates, although the extent and optimum P dosage varied among the plant species. The highest TPH removal (64.66%) was observed in soil planted with the Poaceae species, C. truncata, and amended with 100 mg P kg-1 soil, while H. prostrata showed higher TPH removal compared to the plant belonging to the same Proteaceae family, B. seminuda. The presence of plants resulted in higher AlkB gene abundance and TPH removal relative to the unplanted control. The removal of TPH was associated directly with AlkB gene abundance (R2 > 0.9, p < 0.001), which was affected by plant identity and P levels. The results indicated that an integrated approach involving wild plant species and optimum P amendment, which was determined through experimentation using different plant species, was an efficient way to remediate soil contaminated with TPH.


Assuntos
Petróleo , Poluentes do Solo , Biodegradação Ambiental , Citocromo P-450 CYP4A/genética , Hidrocarbonetos , Fósforo , Rizosfera , Solo , Microbiologia do Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
16.
Environ Pollut ; 293: 118564, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34838711

RESUMO

Land application of sewage sludge is increasingly used as an alternative to landfilling and incineration owing to a considerable content of carbon and essential plant nutrients in sewage sludge. However, the presence of chemical and biological contaminants in sewage sludge poses potential dangers; therefore, sewage sludge must be suitably treated before being applied to soils. The most common methods include anaerobic digestion, aerobic composting, lime stabilization, incineration, and pyrolysis. These methods aim at stabilizing sewage sludge, to eliminate its potential environmental pollution and restore its agronomic value. To achieve best results on land, a comprehensive understanding of the transformation of organic matter, nutrients, and contaminants during these sewage-sludge treatments is essential; however, this information is still lacking. This review aims to fill this knowledge gap by presenting various approaches to treat sewage sludge, transformation processes of some major nutrients and pollutants during treatment, and potential impacts on soils. Despite these treatments, overtime there are still some potential risks of land application of treated sewage sludge. Potentially toxic substances remain the main concern regarding the reuse of treated sewage sludge on land. Therefore, further treatment may be applied, and long-term field studies are warranted, to prevent possible adverse effects of treated sewage sludge on the ecosystem and human health and enable its land application.


Assuntos
Ecossistema , Esgotos , Poluição Ambiental , Humanos , Incineração , Solo
17.
Chemosphere ; 288(Pt 3): 132652, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34695481

RESUMO

Sustainable engineering and management of hydromorphic arable soils need deep knowledge about the redox-mediated interactions between nutrients and soil colloids. Consequently, we examined the redox-mediated interactions of P with metal oxides and organic carbon (OC) in toe-, mid-, and upper-slope arable soils under dynamic redox changes using geochemical (biogeochemical microcosm), spectroscopic (XANES), and molecular (quantum chemical calculations (QCC)) approaches. We controlled the redox potential (EH) in two directions i.e., 1) slowly oxidizing direction (SOD; EH increased from -286 to +564 mV); and 2) slowly reducing direction (SRD; EH decreased from +564 to -148 mV). In the SOD of all soils, P, Fe2+ and OC mobilized at EH ≤ 200 mV, due to the pH decrease from 7.2 to 4.1 and dissolution of Fe-oxyhydroxides/carbonates, as indicated by the decrease of Fe-P and Ca-P determined by P-K-edge-XANES. At EH > 200 mV, P immobilized due to the strong P binding with Fe3+ as suggested by QCC. In the SRD of mid-slope-soil, P immobilized with decreasing EH, due to pH increase and P retention by aromatic carbon and/or precipitation by carbonates, as supported by increase of organic-P and Ca-P. These findings help for management of P in arable soils.


Assuntos
Poluentes do Solo , Solo , Oxirredução , Óxidos , Fósforo , Poluentes do Solo/análise
18.
J Hazard Mater ; 422: 126876, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34416699

RESUMO

Selenium (Se), which can be both hazardous and beneficial to plants, animals and humans, plays a pivotal role in regulating soil-plant-human ecosystem functions. The biogeochemical behavior of Se and its environmental impact on the soil-plant-human system has received broad attention in the last decades. This review provides a comprehensive understanding of Se biogeochemistry in the soil-plant-human system. The speciation, transformation, bioavailability as well as the beneficial and hazardous effects of Se in the soil-plant-human system are summarized. Several important aspects in Se in the soil-plant-human system are detailed mentioned, including (1) strategies for biofortification in Se-deficient areas and phytoremediation of soil Se in seleniferous areas; (2) factors affecting Se uptake and transport by plants; (3) metabolic pathways of Se in the human body; (4) the interactions between Se and other trace elements in plant and animals, in particular, the detoxification of heavy metals by Se. Important research hotspots of Se biogeochemistry are outlined, including (1) the coupling of soil microbial activity and the Se biogeochemical cycle; (2) the molecular mechanism of Se metabolic in plants and animals; and (3) the application of Se isotopes as a biogeochemical tracer in research. This review provides up-to-date knowledge and guidelines on Se biogeochemistry research.


Assuntos
Selênio , Poluentes do Solo , Animais , Biodegradação Ambiental , Ecossistema , Humanos , Plantas , Selênio/toxicidade , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
19.
J Hazard Mater ; 425: 127906, 2022 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-34891020

RESUMO

Improving the recovery of organic matter and phosphorus (P) from hazardous biowastes such as swine manure using acidic substrates (ASs) in conjunction with aerobic composting is of great interest. This work aimed to investigate the effects of ASs on the humification and/or P migration as well as on microbial succession during the swine manure composting, employing multivariate and multiscale approaches. Adding ASs, derived from wood vinegar and humic acid, increased the degree of humification and thermal stability of the compost. The 31P nuclear magnetic resonance spectroscopy and X-ray absorption near-edge structure analyses demonstrated compost P was in the form of struvite crystals, Ca/Al-P phases, and Poly-P (all inorganic P species) as well as inositol hexakisphosphate and Mono-P (organophosphorus species). However, the efficiency of P recovery could be improved by generating more struvite by adding the ASs. The flows among nutrient pools resulted from the diversity in the dominant microbial communities in different composting phases after introducing the ASs and appearance of Bacillus spp. in all phases. These results demonstrate the potential value of ASs for regulating and/or improving nutrients flow during the composting of hazardous biowastes for producing higher quality compost, which may maximize their beneficial benefits and applications.


Assuntos
Compostagem , Animais , Substâncias Húmicas , Esterco , Fósforo , Solo , Suínos
20.
J Hazard Mater ; 416: 126012, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492887

RESUMO

The rapid thermal cracking technology of biomass can convert biomass into bio-oil and is beneficial for industrial applications. Agricultural and forestry wastes are important parts of China's energy, and their high-grade utilization is useful to solve the problem of energy shortages and environmental pollution. To the best of our knowledge, the impact of nanocatalysts on converting biowastes for bio-oil has not been studied. Consequently, we examined the production of bio-oil by pyrolysis of Aesculus chinensis Bunge Seed (ACBS) using nanocatalysts (Fe2O3 and NiO catalysts) for the first time. The pyrolysis products of ACBS include 1-hydroxy-2-propanone (3.97%), acetic acid (5.42%), and furfural (0.66%). These chemical components can be recovered for use as chemical feedstock in the form of bio-oil, thus indicating the potential of ACBS as a feedstock to be converted by pyrolysis to produce value-added bio-oil. The Fe2O3 and NiO catalysts enhanced the pyrolysis process, which accelerated the precipitation of gaseous products. The pyrolysis rates of the samples gradually increased at DTGmax, effectively promoting the catalytic cracking of ACBS, which is beneficial to the development and utilization of ACBS to produce high valorization products. Combining ACBS and nanocatalysts can change the development direction of high valorization agricultural and forestry wastes in the future.


Assuntos
Aesculus , Pirólise , Biocombustíveis , Biomassa , Temperatura Alta , Óleos de Plantas , Polifenóis , Sementes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA