Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Med Mycol ; 60(9)2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36099875

RESUMO

Oral biofilms comprise extracellular polysaccharides and polymicrobial microorganisms. The objectives of the study were to characterize the deer velvet antler (DVA) compounds and their effect on Candida species biofilm formation with the hypothesis that DVA inhibits the biofilm of Candida spp. Liquid Chromatography-Quadrupole Time of Flight-Mass Spectrometry (LC-QTOF-MS) was conducted to characterize the DVA compounds. To study the effect of DVA on biofilm, Candida albicans ATCC MYA-4901 (ALT5), AIDS isolate (ALC2), oral cancer isolate (ALC3), C. dubliniensis ATCC MYA-2975, C. glabrata ATCC 90030, C. krusei 14 243, C. lusitaniae ATCC 34449, C. parapsilosis ATCC 22019, and C. tropicalis ATCC 13803 were inoculated with DVA in separate wells of a 96-well plate containing RPMI-1640 followed by 72 h incubation. A total of 45 compounds were detected in the DVA extract. C. lusitaniae exhibited a higher percentage of biofilm biomass reduction when treated with DVA extract (66.10% ± 5.33), followed by ALC3 (44.12% ± 6.24). However, C. glabrata, C. krusei, and C. parapsilosis showed no reduction in biofilm biomass after being treated with DVA extract. Most Candida strains also exhibited decreased total cell count when treated with DVA extract, except for ALC3 and C. krusei. ALT5 had the lowest total cell count (0.17 × 105 cells/ml) when cultured with DVA extract. In conclusion, DVA extract inhibits Candida spp. biofilm formation except for C. glabrata, C. krusei, and C. parapsilosis.


The study determines deer velvet antler (DVA) compounds and their effect on Candida species biofilm formation. A total of 45 compounds were detected in the DVA extract. Most Candida spp. exhibited a higher percentage of biofilm reduction and decreased total cell count when treated with DVA extract.


Assuntos
Chifres de Veado , Cervos , Animais , Biofilmes , Candida , Candida glabrata , Candida tropicalis , Extratos Vegetais/farmacologia
2.
Biofouling ; 38(6): 614-627, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35899682

RESUMO

This study aimed to determine the effect of synbiotic Musa acuminata skin extract (MASE) and Streptococcus salivarius K12 (K12) on Candida species biofilm formation. Liquid chromatography quadrupole time-of-flight (LC-Q-TOF-MS) was conducted to characterize MASE. To determine the effect of synbiotic on Candida biofilm, 200 µL of RPMI-1640 containing Candida, K12, and MASE were pipetted into the same well and incubated at 37 °C for 72 h. A similar protocol was repeated with K12 or MASE to determine the probiotic and prebiotic effects, respectively. Dimorphism, biofilm biomass, and Candida total cell count (TCC) were determined. A total of 60 compounds were detected in MASE. C. albicans (ALT5) and Candida lusitaniae exhibited the highest reduction in biofilm biomass when co-cultured with prebiotic (77.70 ± 7.67%) and synbiotic (97.73 ± 0.28%), respectively. All Candida spp. had decreased TCC and hyphae when co-cultured with synbiotic. In conclusion, MASE and K12 inhibit Candida biofilm formation.


Assuntos
Musa , Streptococcus salivarius , Simbióticos , Biofilmes , Candida , Candida albicans , Extratos Vegetais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA