Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Nanomedicine ; 19: 453-469, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38250190

RESUMO

Introduction: Silver nanoparticles (AgNPs) have been found to exhibit unique properties which show their potential to be used in various therapies. Green synthesis of AgNPs has been progressively gaining acceptance due to its cost-effectiveness and energy-efficient nature. Objective: In the current study, aqueous extract of Thymus vulgaris (T. vulgaris) was used to synthesize the AgNPs using green synthesis techniques followed by checking the effectiveness and various biological activities of these AgNPs. Methods: At first, the plant samples were proceeded for extraction of aqueous extracts followed by chromatography studies to measure the phenolics and flavonoids. The synthesis and characterization of AgNPs were done using green synthesis techniques and were confirmed using Fourier transform infra-red (FT-IR) spectroscopy, UV-visible spectroscopy, scanning electron microscope (SEM), zeta potential, zeta sizer and X-Ray diffraction (XRD) analysis. After confirmation of synthesized AgNPs, various biological activities were checked. Results: The chromatography analysis detected nine compounds accounting for 100% of the total amount of plant constituents. The FT-IR, UV-vis spectra, SEM, zeta potential, zeta sizer and XRD analysis confirmed the synthesis of AgNPs and the variety of chemical components present on the surface of synthesized AgNPs in the plant extract. The antioxidant activity of AgNPs showed 92% inhibition at the concentration of at 1000 µg/mL. A greater inhibitory effect in anti-diabetic analysis was observed with synthesized AgNPs as compared to the standard AgNPs. The hemolytic activity was low, but despite low concentrations of hemolysis activity, AgNPs proved not to be toxic or biocompatible. The anti-inflammatory activity of AgNPs was observed by in-vitro and in-vivo approaches in range at various concentrations, while maximum inhibition occurs at 1000 µg (77.31%). Conclusion: Our data showed that the potential biological activities of the bioactive constituents of T. vulgaris can be enhanced through green synthesis of AgNPs from T. vulgaris aqueous extracts. In addition, the current study depicted that AgNPs have good potential to cure different ailments as biogenic nano-medicine.


Assuntos
Nanopartículas Metálicas , Thymus (Planta) , Prata/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Morte Celular , Hemólise
2.
Int J Biol Macromol ; 258(Pt 1): 128746, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38104681

RESUMO

Due to growing environmental concerns for better waste management, this study proposes developing a composite aerogel using cellulose nanofibers (CNF) and spent coffee grounds (SCG) through an eco-friendly method for efficient methylene blue (MB) adsorption. Adding SCG to the CNF aerogel altered the physical properties: it increases the volume (4.14 cm3 to 5.25 cm3) and density (0.018 to 0.022 g/cm3) but decrease the water adsorption capacity (2064 % to 1635 %). FTIR spectrum showed distinct functional groups in both all aerogels, showing hydroxyl, glyosidic bonds, and aromatic compounds. Additionally, SCG improved thermal stability of the aerogels. In term of adsorption efficacy, CNF-SCG40% aerogel as exceptionally well. According to Langmuir isotherm models, the adsorption of MB happened in a monolayer, with CNF-SCG40% showing a maximum adsorption capacity of 113.64 mg/g, surpassing CNF aerogel (58.82 mg/g). The study identified that the pseudo-second-order model effectively depicted the adsorption process, indicating a chemical-like interaction. This investigation successfully produced a single-use composite aerogel composed of CNF and SCG using an eco-friendly approach, efficiently adsorbing MB. By utilizing cost-effective materials and eco-friendly methods, this approach offers a sustainable solution for waste management, contributes to an eco-friendly industrial environment, and reduces production expenses and management costs.


Assuntos
Celulose , Café , Adsorção , Meio Ambiente , Radical Hidroxila , Azul de Metileno
3.
Int J Biol Macromol ; 242(Pt 2): 124809, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37178877

RESUMO

Herein, we described for the first time, an efficient biogenic synthesis of APTs-AgNPs using acid protease from Melilotus indicus leaf extract. The acid protease (APTs) has an essential role in the stabilization, reduction, and capping of APTs-AgNPs. The crystalline nature, size, and surface morphology of APTs-AgNPs were examined using different techniques such as XRD, UV, FTIR, SEM, EDS, HRTEM, and DLS analysis. The generated APTs-AgNPs demonstrated notable performance as dual functionality (photocatalyst and antibacterial disinfection). By destroying 91 % of methylene blue (MB) in <90 min of exposure, APTs-AgNPs demonstrated remarkable photocatalytic activity. APTs-AgNPs also showed remarkable stability as a photocatalyst after five test cycles. Furthermore, the APTs-AgNPs was found to be a potent antibacterial agent with inhibition zones of 30(±0.5 mm), 27(±0.4 mm), 16(±0.1 mm), and 19(±0.7 mm) against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria, respectively, under both light and dark conditions. Furthermore, APTs-AgNPs effectively scavenged 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals, demonstrating their potent antioxidant activity. The outcomes of this study thus demonstrates the dual functionality of APTs-AgNPs produced using the biogenic approach method as a photocatalyst and an antibacterial agent for effective microbial and environmental control.


Assuntos
Nanopartículas Metálicas , Peptídeo Hidrolases , Peptídeo Hidrolases/farmacologia , Prata/farmacologia , Prata/química , Nanopartículas Metálicas/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antibacterianos/farmacologia , Antibacterianos/química , Endopeptidases/farmacologia , Escherichia coli , Testes de Sensibilidade Microbiana
4.
Pharmaceutics ; 14(6)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35745852

RESUMO

Icariin (ICA), a main active compound of the Epimedium genus, is used as an aphrodisiac in traditional Chinese herbal medicine. Despite its therapeutic efficacy, ICA displays reduced oral absorption, and therefore, low bioavailability hindered its clinical application. Implementing nanotechnology in the field of formulation has been a focus to improve the efficacy of ICA. In this regard, polymeric nanoparticles find a potential application as drug delivery systems. A nanosphere formula was designed, aiming to improve the drug's efficacy. The proposed ICA nanosphere formula (tocozeinolate) was optimized using D-optimal response surface design. The concentrations of ICA (X1), D-α-tocopherol polyethylene glycol 1000 succinate (TPGS, X2), zein (X3), and sodium deoxycholate (SDC, X4) expressed as percentages were investigated as quantitative independent variables. As per the experimental design, 23 formulations were developed, which were investigated for particle size (PS, nm), zeta potential (ZP, mV), and entrapment efficiency (EE, %) as response parameters. Numerical optimization and desirability approach were employed to predict the optimized variable levels that, upon combination, could result in minimized size and maximized zeta potential and ICA entrapment. The optimized ICA-tocozeinolate nanospheres showed a particle size of 224.45 nm, zeta potential of 0.961 mV, and drug entrapment of 65.29% that coincide well with the predicted values. The optimized ICA-tocozeinolate nanospheres were evaluated for sexual behavior in Wistar male rats compared to raw ICA at equivalent doses (20 mg/kg). In vivo assessment results showed significant sexual behavior enhancement by the optimized formulation, as evidenced by decreased average time of both mount latency (ML) and ejaculation latency (EL) to almost half those of raw ICA. Additionally, intromission latency (IL) time was reduced by 41% compared to the raw ICA. These results highlighted the potential of the proposed ICA-tocozeinolate nanospheres as a promising platform for improving the delivery and efficacy of therapeutic agents.

5.
Pharmaceuticals (Basel) ; 15(4)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35455424

RESUMO

Malva parviflora L., Little mallow, has been traditionally used as an alternative food source. It acts as a medicinal herb containing a potential source of mucilage thus herein; we aimed to assess the toxicity, anti-inflammatory, antitussive and gastro-protective actions of M. parviflora mucilage extracted from its leaves (MLM) and fruit (MFM). Toxicity studies were investigated by in vitro hemolytic assay whereas acute anti-inflammatory and antitussive activities were assessed by carrageenan-induced paw edema and sulphur dioxide induced cough model in rats, respectively. Gastro-protective effects were studied using ethanol induced acute and chronic gastric ulcer rat models. Their metabolic profiles were determined using gas chromatography. The results revealed that MLM and MFM were non-toxic towards human erythrocytes and their lethal doses were found to be greater than 5 g/kg. Pretreatment with MLM (500 mg/kg) and MFM (500 mg/kg) significantly reduced the carrageenan-induced paw thickness (p < 0.001). Maximum edema inhibition (%) was observed at 4 h in diclofenac sodium (39.31%) followed by MLM (27.35%) and MFM (15.68%). Animals pretreated with MLM (500 mg/kg) significantly lower the cough frequency in SO2 gas induced cough models in contrast to control. Moreover, MLM at doses of 250 and 500 mg/kg reduced the ethanol induced gastric mucosal injuries in acute gastric ulcer models presenting ulcer inhibition of 23.04 and 38.74%, respectively. The chronic gastric ulcer model MFM (500 mg/kg) demonstrated a remarkable gastro-protective effect showing 63.52% ulcer inhibition and results were closely related to standard drug sucralfate. In both models, MLM and MFM decreased gastric juice volume and total acidity in addition to an increased gastric juice pH and gastric mucous content justifying an anti-secretary role of this mucilage that was further confirmed by histopathological examination. Meanwhile, GC analyses of the mucilage revealed their richness with natural as well as acidic monosaccharides. It is concluded that MLM and MFM can be used therapeutically for the management of inflammation, cough and gastric ulcer.

6.
Drug Deliv ; 29(1): 284-293, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35019794

RESUMO

Alopecia areata is a skin disorder characterized by scarless, localized hair loss that is usually managed by topical treatments that might further worsen the condition. Therefore, the current study aimed to develop nano-cubosomes loaded with finasteride (FI) and oregano oil (Or) to improve drug solubility and permeation through skin and then incorporate it into an aloe ferox gel base. An l-optimal coordinate exchange design was adopted to optimize nano-cubosomes. Phytantriol and Alkyl Acrylate were employed as the lipid material, and surfactant respectively for cubosomes manufacture. The produced formulations were assessed for their particle size, entrapment efficiency (EE%), FI steady-state flux (Jss) and minimum inhibitory concentration (MIC) against Pro-pionibacterium acnes. Optimal FI-Or-NCu had a particle size of 135 nm, EE% equals 70%, Jss of 1.85 µg/cm2.h, and MIC of 0.44 µg/ml. The optimum formulation loaded gel gained the highest drug release percent and ex vivo skin permeation compared to FI aqueous suspension, and pure FI loaded gel. Aloe ferox and oregano oil in the optimized gel formulation had a synergistic activity on the FI permeation across the skin and against the growth of p. acne bacteria which could favor their use in treating alopecia. Thus, this investigation affirms the ability of FI-Or-NCu loaded aloe ferox gel could be an effective strategy that would enhance FI release and permeation through skin and maximize its favorable effects in treating alopecia.


Assuntos
Aloe/química , Alopecia/patologia , Finasterida/farmacologia , Sistemas de Liberação de Fármacos por Nanopartículas/química , Origanum/química , Administração Cutânea , Animais , Química Farmacêutica , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Álcoois Graxos/química , Finasterida/administração & dosagem , Masculino , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Ratos , Ratos Wistar , Absorção Cutânea , Solubilidade , Propriedades de Superfície
7.
Drug Deliv ; 28(1): 1043-1054, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34060397

RESUMO

Herpes labialis, caused by herpes simplex virus type 1, is usually characterized by painful skin or mucosal lesions. Penciclovir (PV) tablets are found to be effective against herpes labialis but suffer from poor oral bioavailability. This study aimed to combine the benefits of PV and lavender oil (LO), which exhibits anesthetic activity, in the form of a self-nanoemulsifying drug delivery system (SNEDDS) for the treatment of herpes labialis. Toward this purpose, LO (oil), Labrasol:Labrafil M1944 CS in the ratio of 6:4 (surfactant mixture), and Lauroglycol-FCC (co-surfactant, selected based on the solubility of PV) were evaluated as the independent factors using a distance quadratic mixture design. The formulation was optimized for the minimum globule size and maximum stability index and was determined to contain 14% LO, 40.5% Labrasol:Labrafil 1944 (6:4), and 45.5% Lauroglycol-FCC. The optimized PV-LO-SNEDDS was embedded in chitosan hydrogel and the resulting formulations coded by (O3) were prepared and evaluated. The rheological studies demonstrated a combined pseudoplastic and thixotropic behavior with the highest flux of PV permeation across sheep buccal mucosa. Compared to a marketed 1% PV cream, the O3 formulation exhibited a significantly higher and sustained PV release, nearly twice the PV permeability, and a relative bioavailability of 180%. Overall, results confirm that the O3 formulation can provide an efficient delivery system for PV to reach oral mucosa and subsequent prolonged PV release. Thus, the PV-LO-SNEDDS embedded oral gel is promising and can be further evaluated in clinical settings to establish its therapeutic use in herpes labialis.


Assuntos
Guanina/farmacologia , Herpes Labial/tratamento farmacológico , Nanopartículas/química , Óleos Voláteis/farmacologia , Óleos de Plantas/farmacologia , Administração Tópica , Animais , Química Farmacêutica , Quitosana/química , Preparações de Ação Retardada , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Emulsões/química , Glicerídeos/química , Guanina/administração & dosagem , Guanina/farmacocinética , Hidrogéis/química , Lavandula , Masculino , Óleos Voláteis/administração & dosagem , Óleos Voláteis/efeitos adversos , Tamanho da Partícula , Óleos de Plantas/administração & dosagem , Óleos de Plantas/efeitos adversos , Ratos , Ratos Wistar , Reologia , Ovinos
8.
Drug Deliv ; 28(1): 741-751, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33840320

RESUMO

The majority of newly developed drugs need to be incorporated with delivery systems to maximize their effect and minimize side effects. Nanoemulsions (NEs) are one type of delivery system that helps to improve the solubility and dissolution of drugs, attempting to enhance their bioavailability and onset of action. The objective of this investigation was to develop an omega-3 oil-based NE loaded with loxoprofen (LXP) to enhance its dissolution, in vitro release, and mucosal penetration and decrease its mucosal ulcerative effects when applied in an oral treatment. LXP-loaded NEs were formulated with varying levels of omega-3 oil (10-30%), surfactant polyoxyethylene-C21-ethers (laureth-21) (40-60%), and co-surfactant polyethylene glycol-40 hydrogenated castor oil (HCO-40) (30-50%) using an extreme vertices mixture design. The developed NEs were characterized for globule size and drug loading capacity. The optimal formulation was tested for in vitro drug release, ex vivo permeation, and ulcer index value. The developed NE acquired a globule size ranging 71-195 nm and drug loading capacity of 43-87%. Considering the results of the in vitro release study, the optimized NE formulation achieved 2.45-fold and 2-fold increases in drug permeation across tested mucosa compared to a marketed tablet and drug aqueous dispersion, respectively. Moreover, the optimum NE exhibited the best ulcer index in comparison to drug aqueous suspension and different formulations when tested in rats. Overall, this research highlights the capacity of NEs to deliver LXP with enhanced solubility, drug release, and permeation while effectively protecting the application site from side effects of the model drug.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Ácidos Graxos Ômega-3/química , Nanopartículas/química , Fenilpropionatos/farmacologia , Odontalgia/tratamento farmacológico , Administração Tópica , Animais , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/efeitos adversos , Anti-Inflamatórios não Esteroides/farmacocinética , Química Farmacêutica , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Emulsões/química , Masculino , Fenilpropionatos/administração & dosagem , Fenilpropionatos/efeitos adversos , Fenilpropionatos/farmacocinética , Ratos , Ovinos , Absorção Cutânea/fisiologia , Solubilidade , Tensoativos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA