Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37569348

RESUMO

Asthma is a chronic inflammatory lung disease that causes respiratory difficulties. Black ginseng extract (BGE) has preventative effects on respiratory inflammatory diseases such as asthma. However, the pharmacological mechanisms behind the anti-asthmatic activity of BGE remain unknown. To investigate the anti-asthmatic mechanism of BGE, phorbol 12-myristate 13-acetate plus ionomycin (PMA/Iono)-stimulated mouse EL4 cells and ovalbumin (OVA)-induced mice with allergic airway inflammation were used. Immune cells (eosinophils/macrophages), interleukin (IL)-4, -5, -13, and serum immunoglobulin E (IgE) levels were measured using an enzyme-linked immunosorbent assay. Inflammatory cell recruitment and mucus secretion in the lung tissue were estimated. Protein expression was analyzed via Western blotting, including that of inducible nitric oxide synthase (iNOS) and the activation of protein kinase C theta (PKCθ) and its downstream signaling molecules. BGE decreased T helper (Th)2 cytokines, serum IgE, mucus secretion, and iNOS expression in mice with allergic airway inflammation, thereby providing a protective effect. Moreover, BGE and its major ginsenosides inhibited the production of Th2 cytokines in PMA/Iono-stimulated EL4 cells. In EL4 cells, these outcomes were accompanied by the inactivation of PKCθ and its downstream transcription factors, such as nuclear factor of activated T cells (NFAT), nuclear factor kappa B (NF-κB), activator of transcription 6 (STAT6), and GATA binding protein 3 (GATA3), which are involved in allergic airway inflammation. BGE also inhibited the activation of PKCθ and the abovementioned transcriptional factors in the lung tissue of mice with allergic airway inflammation. These results highlight the potential of BGE as a useful therapeutic and preventative agent for allergic airway inflammatory diseases such as allergic asthma.


Assuntos
Antiasmáticos , Asma , Hipersensibilidade , Panax , Animais , Camundongos , Antiasmáticos/farmacologia , Antiasmáticos/uso terapêutico , Interleucina-4/metabolismo , Asma/metabolismo , Pulmão/metabolismo , Citocinas/metabolismo , Hipersensibilidade/metabolismo , Transdução de Sinais , Inflamação/metabolismo , Imunoglobulina E , Panax/metabolismo , Ovalbumina , Camundongos Endogâmicos BALB C , Modelos Animais de Doenças
2.
Phytomedicine ; 96: 153848, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34785110

RESUMO

BACKGROUND: Since long-term or high-dose use of COPD medication causes adverse effects in patients with COPD, more effective and safer ways to manage COPD symptoms are required. Daphne kiusiana Miquel is a medicinal plant, but its anti-COPD efficacy was little studied. PURPOSE: We investigated the anti-COPD activity and molecular mechanism of action of active compounds isolated from D. kiusiana to find drug candidates for COPD. METHODS: We isolated seven compounds (1-7) in an ethyl acetate (EtOAc) fraction from D. kiusiana, and determined that seven compounds effectively control the inflammatory responsiveness in both PMA-stimulated lung epithelial cells (in vitro) and/or in COPD model mice using cigarette smoke- and lipopolysaccharides-exposed animals in vivo. RESULTS: We show that the ethyl acetate (EtOAc) fraction from D. kiusiana. suppresses inflammatory response in both PMA-stimulated human lung epithelial cells (in vitro) and COPD model mice (in vivo). The EtOAc fraction effectively suppresses various inflammatory responses, such as mucus secretion, ROS production, bronchial recruitment of inflammatory cells, and release of proinflammatory cytokines. Additionally, we isolated three compounds with anti-inflammatory efficacy from the EtOAc fraction, out of which daphnodorin C was the most effective. Finally, we demonstrated that daphnodorin C negatively regulates inflammatory gene expression by suppressing NF-κB and specific MAPK signaling pathways (JNK and p38) in vitro and in vivo. CONCLUSIONS: These results suggest that daphnodorin C could be a promising therapeutic alternative for managing COPD symptoms.


Assuntos
Daphne , Doença Pulmonar Obstrutiva Crônica , Animais , Benzopiranos , Humanos , Inflamação/tratamento farmacológico , Pulmão , Camundongos , NF-kappa B , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Fumaça
3.
Phytomedicine ; 40: 148-157, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29496167

RESUMO

BACKGROUND: Piscroside C, isolated from Pseudolysimachion rotundum var. subintegrum, is a novel iridoid glycoside with therapeutic efficacy in a mouse model of chronic obstructive pulmonary disease (COPD). Piscroside C has been reported as a constituent of YPL-001 (under Phase 2a study, ClinicalTrials.gov identifier NCT02272634). PURPOSE: To investigate the mechanisms behind piscroside C therapeutic effects on COPD in human airway epithelial NCI-H292 cells. METHODS: We tested if piscroside C effectively suppresses MUC5AC gene expression and TNF-RSC/IKK/NF-κB cascades in TNF-α-stimulated NCI-H292 cells by employing, reverse transcription-polymerase chain reaction, enzyme-linked immunosorbent assay, luciferase reporter assays, chromatin immunoprecipitation assays and immunoprecipitation. RESULTS: Piscroside C markedly suppressed the expression of TNF-α-induced MUC5AC mucus protein by inhibiting the transcriptional activity of NF-κB in NCI-H292 cells. Indeed, piscroside C negatively regulated the function of TNF receptor 1 signaling complex (TNF-RSC, an upstream regulator of the NF-κB pathway) without affecting its extracellular interaction with the TNF-α ligand. This inhibitory effect by piscroside C is mediated by the inactivation of protein kinase C (PKC), an essential regulator of TNF-RSC. PKC inactivation by piscroside C results in decreased PKCδ binding to a TRAF2 subunit of TNF-RSC and subsequent reduced IKK phosphorylation, resulting in NF-κB inactivation. CONCLUSION: We propose that piscroside C is a promising therapeutic constituent of YPL-001 through its inhibition of PKCδ activity in the TNF-RSC/IKK/NF-κB/MUC5AC signaling cascade.


Assuntos
Glicosídeos Iridoides/farmacologia , NF-kappa B/metabolismo , Proteína Quinase C-delta/antagonistas & inibidores , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Fator de Necrose Tumoral alfa/metabolismo , Brônquios/citologia , Linhagem Celular , Células Epiteliais/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Humanos , Mucina-5AC/genética , Mucina-5AC/metabolismo , Complexos Multiproteicos , Fosforilação/efeitos dos fármacos , Proteína Quinase C-delta/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator 2 Associado a Receptor de TNF/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
4.
BMC Complement Altern Med ; 16: 223, 2016 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-27424198

RESUMO

BACKGROUND: In this study, the anti-melanogenesis efficacy of clinically used herbal prescription LASAP-C, which consists of four herbal medicines-Rehmanniae Radix Crudus, Lycii Fructus, Scutellariae Radix, and Angelicae Dahuricae Radix, was investigated. METHODS: The chemical profile of LASAP-C was established by conducting ultra-performance liquid chromatography-electrospray ionization-mass spectrometry. Anti-melanogenic efficacy was evaluated by tyrosinase, tyrosinase-related protein (TRP)-1, and TRP-2 expression in B16F10 melanoma cells. In vivo evaluation was performed by using zebrafish model. RESULTS: Molecular evidences suggested that melanin synthesis was inhibited via the down-regulation of tyrosinase, tyrosinase-related protein (TRP)-1, and TRP-2 expression in B16F10 melanoma cells treated with LASAP-C. The anti-melanogenesis efficacy was also confirmed in vivo by using the zebrafish model. CONCLUSION: The results of this study provide strong evidences that LASAP-C can be used as an active component in cosmeceutical products for reducing excess pigmentation in the human skin.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Melaninas/biossíntese , Melanoma Experimental/tratamento farmacológico , Fitoterapia , Extratos Vegetais/uso terapêutico , Animais , Antineoplásicos Fitogênicos/química , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Oxirredutases Intramoleculares/metabolismo , Melanoma Experimental/metabolismo , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Monofenol Mono-Oxigenase/metabolismo , Oxirredutases/metabolismo , Preparações Farmacêuticas , Pigmentação/efeitos dos fármacos , Peixe-Zebra
5.
Artigo em Inglês | MEDLINE | ID: mdl-23781272

RESUMO

To identify the active compound arctigenin in Fructus Arctii (dried seed of medicinal plant Arctium lappa) and to elucidate the inhibitory mechanism in melanogenesis, we analyzed melanin content and tyrosinase activity on B16BL6 murine melanoma and melan-A cell cultures. Water extracts of Fructus Arctii were shown to inhibit tyrosinase activity in vitro and melanin content in α -melanocyte stimulating hormone-stimulated cells to similar levels as the well-known kojic acid and arbutin, respectively. The active compound arctigenin of Fructus Arctii displayed little or no cytotoxicity at all concentrations examined and decreased the relative melanin content and tyrosinase activity in a dose-dependent manner. Melanogenic inhibitory activity was also identified in vivo with zebrafish embryo. To determine the mechanism of inhibition, the effects of arctigenin on tyrosinase gene expression and tyrosinase promoter activity were examined. Also in addition, in the signaling cascade, arctigenin dose dependently decreased the cAMP level and promoted the phosphorylation of extracellular signal-regulated kinase. This result suggests that arctigenin downregulates cAMP and the tyrosinase enzyme through its gene promoter and subsequently upregulates extracellular signal-regulated kinase activity by increasing phosphorylation in the melanogenesis signaling pathway, which leads to a lower melanin content.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA